Single-nanozyme single-readout enabled efficient identification of polyphenols for Chinese tea authentication and brewing evaluation.

Food Chem

School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China; Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, Qingdao 266042, PR China; State Environmental Protection Key Laboratory of Monitoring for Heavy Metal Pollutants, Hunan Ecology and Environment Monitoring Center, Changsha 410019, PR China; Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou 350108, PR China. Electronic address:

Published: March 2025

With the popularity of health-conscious tea drinking, precise sensing of polyphenols as a main class of antioxidants in tea becomes critical for tea authentication and brewing evaluation. Sensor arrays show great potential for the goal, but currently available sensor arrays always need multiple sensing units and/or multi-dimensional signals, resulting in cumbersome sensor construction and operation as well as data processing. Developing easy-to-fabricate and easy-to-use sensor arrays for efficient discrimination is still challenging. Here we propose a new sensor array that only uses a single signal collected dynamically with oxidase-like MnOOH as a sole sensing material. The synthesized MnOOH nanowires exhibit favorable activity to catalyze the chromogenic oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue oxTMB. By taking gallic acid, tannic acid, L-epicatechin, (-)-epigallocatechin, (-)-epicatechin gallate and (-)-epigallocatechin gallate as models, the six tea polyphenols show discrepant inhibitory effects on the above catalytic system. As a result, these polyphenols, no matter as a single component at various concentrations or multi-component mixtures with different ratios, can be well distinguished by the single-nanozyme single-readout sensor array. Besides, different Chinese tea species, black tea varieties and impacts of brewing methods are accurately identified. Evidently, our sensor array avoids the requirement for multiple sensing units and multi-dimensional signals, greatly simplifying the fabrication of sensor arrays and their use, which provides an efficient yet facile tool for tea authentication and brewing evaluation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2024.142328DOI Listing

Publication Analysis

Top Keywords

sensor arrays
16
tea authentication
12
authentication brewing
12
brewing evaluation
12
sensor array
12
single-nanozyme single-readout
8
tea
8
chinese tea
8
sensor
8
multiple sensing
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!