This report describes an investigation of the effects of developing hypertension on the synthesis and accumulation of insoluble elastin in the thoracic aorta of young rats. Uninephrectomized male rats were made hypertensive by administration of deoxycorticosterone acetate and addition of 1% NaCl to their drinking water. Divergence of systolic blood pressures between treated and control animals and hypertrophy of the vessel began after about 2 weeks of treatment. Coincident with the appearance of hypertrophy, there was an increased accumulation of insoluble elastin in the aorta and a large increase in the capacity of the aortic tissue to synthesize elastin. However, in spite of continued increases in blood pressure and vessel hypertrophy, this effect on elastin synthesis and accumulation was transient. The results of this study suggest that synthesis of elastin in aortic tissue of young rats is highly sensitive to alterations in blood pressure.

Download full-text PDF

Source
http://dx.doi.org/10.1139/o86-006DOI Listing

Publication Analysis

Top Keywords

synthesis accumulation
12
developing hypertension
8
hypertension synthesis
8
elastin aorta
8
accumulation insoluble
8
insoluble elastin
8
young rats
8
aortic tissue
8
blood pressure
8
elastin
6

Similar Publications

MicroRNAs (miRNAs) are associated with amyloid-β (Aβ) dysmetabolism, a pivotal factor in the pathogenesis of Alzheimer's disease (AD). This study unveiled a novel miRNA, microRNA-32533 (miR-32533), featuring a distinctive base sequence identified through RNA sequencing of the APPswe/PSEN1dE9 (APP/PS1) mouse brain. Its role and underlying mechanisms were subsequently explored.

View Article and Find Full Text PDF

Mineral Stress Drives Loss of Heterochromatin: An Early Harbinger of Vascular Inflammaging and Calcification.

Circ Res

January 2025

British Heart Foundation Centre for Research Excellence, School of Cardiovascular and Metabolic Medicine and Sciences, James Black Centre, King's College London, United Kingdom (C.Y.H., M.-Y.W., J.T., S.A., L.D., G.A., R.H., C.M.S.).

Background: Vascular calcification is a detrimental aging pathology markedly accelerated in patients with chronic kidney disease. Prelamin A is a biomarker of vascular smooth muscle cell aging that accelerates calcification however the mechanisms remain undefined.

Methods: Vascular smooth muscle cells were transduced with prelamin A using an adenoviral vector and epigenetic modifications were monitored using immunofluorescence and targeted polymerase chain reaction array.

View Article and Find Full Text PDF

The pathophysiology of dystonia in Wilson disease (WD) is complex and poorly understood. Copper accumulation in the basal ganglia, disrupts dopaminergic pathways, contributing to dystonia's development via neurotransmitter imbalance. Despite advances in diagnosis and management, WD with dystonia remains a challenging condition to treat.

View Article and Find Full Text PDF

Elafibranor: A promising therapeutic approach for liver fibrosis and gut barrier dysfunction in alcohol-associated liver disease.

World J Gastroenterol

January 2025

Department of Biochemistry, School of Medicine, College of Medicine, China Medical University, Taichung 404328, Taiwan.

This article discusses the recent study written by Koizumi . Alcohol-associated liver disease (ALD) is a major cause of liver-related morbidity and mortality, which is driven by complex mechanisms, including lipid accumulation, apoptosis, and inflammatory responses exacerbated by gut barrier dysfunction. The study explored the therapeutic potential of elafibranor, a dual peroxisome proliferator-activated receptor alpha/delta agonist.

View Article and Find Full Text PDF

Skeletal muscle (SM) is essential for movement, stability, and overall body function, and it readily adapts to changes in energy demand. Myogenesis is energy-intensive and involves complex molecular and cellular events. We recently demonstrated that the absence of lysosomal acid lipase (LAL) significantly impacts the SM phenotype, primarily by disrupting energy homeostasis and reducing ATP production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!