Tire and road wear particles (TRWP) are generated at the frictional interface between tires and the road surface. This mixture of tire tread and road pavement materials can migrate from roads into nearby water bodies during precipitation events. The absence of mass-based measurements in marine environments introduces uncertainty in environmental risk assessments and fate and transport models. Surface water and sediment samples were collected from nine Osaka Bay (Japan) locations for TRWP mass determination in June 2023. Additionally, sediment traps were deployed for approximately nine weeks at three locations near the mouth of the Yodo River. Large volumes of surface water (approximately 10,000 L/sample) were sequentially filtered (100, 10, 0.5 μm) to capture retained solids between 0.5 μm and 5 mm. Sediment and retained solids were analyzed for TRWP using Pyrolysis-Gas Chromatography/Mass Spectrometry (Py-GC/MS) and the particulate zinc (Zn) method. TRWP concentrations in surface water retained solids and sediment showed spatial variation, with median concentrations of 231 μg/g dw and 312 μg/g (grab samples) and 460 μg/g (trap samples), respectively, with higher concentrations near the mouth of the Yodo River, indicating greater influence from urban areas. The study's findings improve understanding of the Py-GC/MS method, highlighting the necessary adjustments to reduce biases and enhance accuracy, as well as the relationship between Py-GC/MS and the particulate Zn method. These results can inform future environmental risk assessments, fate and transport models, and strategies for mitigating TRWP in marine environments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2024.117363DOI Listing

Publication Analysis

Top Keywords

surface water
12
retained solids
12
tire road
8
road wear
8
wear particles
8
osaka bay
8
bay japan
8
marine environments
8
environmental risk
8
risk assessments
8

Similar Publications

The extraction of mineral deposits is often associated with the occurrence of acid mine drainage (AMD), which can persist even after mine closure due to remaining sulfide minerals. This study investigates a 200-year-old abandoned mine and its impacts on nearby water resources. The study area is well known for Kuroko ore deposits located upstream of spring and river water resources.

View Article and Find Full Text PDF

Freshwater ecosystems, including high-altitude lakes, can be affected by trace metal pollution derived from a mix of natural sources and anthropogenic activities. These pollutants often collect in surface sediments, with notable concentrations in the deeper areas of lakes. To evaluate the environmental risk associated with metal contaminated sediment in Rara Lake, southern Himalaya, surface sediment samples were systematically collected in November 2018, with a subsequent specific emphasis on determinations of trace element concentrations.

View Article and Find Full Text PDF

A high-resolution record of central Mediterranean Sea Surface Temperatures (SSTs) based on the alkenone UK'37 index and planktic δ18O values for the surface-dweller G. ruber has been reconstructed across the Pliocene/Pleistocene transition at Monte San Nicola (Sicily), reference area for the GSSP (Global Boundary Stratotype Section and Point) of the Gelasian Stage. Spectral analyses indicate that the SST record is predominantly paced by a cyclicity in the ~47 kyr time domain, consistent with the obliquity driven glacial-interglacial variability that is expected to dominate in the interval of relevance.

View Article and Find Full Text PDF

First Report of Causing Bacterial Blight on Glossy Abelia.

Plant Dis

December 2024

Clemson University - EREC, Plant and Environmental Sciences, 64 Research Road, Blackville, South Carolina, United States, 29817;

Glossy abelia (Abelia × grandiflora) is an evergreen ornamental shrub used in landscaping globally. From Jun. 2023 to Feb.

View Article and Find Full Text PDF

Fangfeng (Saposhnikovia divaricata) is a perennial plant belonging to the Umbelliferae family, and is widely cultivated as a traditional Chinese medicine plant used to treat various diseases in northern China. In August 2022, a widespread leaf spot disease emerged on the Fangfeng leaves across a 2.5-acre farmland located in the Naiman District of Tongliao City, China ( 44°17' N; 121°29' E), where 5,000 acres of Fangfeng had been cultivated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!