Background: Rice is subjected to various environmental stresses, resulting in significant production losses. Abiotic stresses, particularly drought and salinity, are the leading causes of plant damage worldwide. The High-affinity Potassium Transporter (HKT) gene family plays an important role in enhancing crop stress tolerance by regulating physiological and enzymatic functions.
Methods And Results: This study investigates the effect of overexpressing the rice HKT1;5 gene in Arabidopsis thaliana on its tolerance to salinity and drought. The OsHKT1;5 gene was introduced into Arabidopsis under the control of 35 S promoter of CaMV via floral dip transformation method. PCR confirmed the integration of the transgene into the Arabidopsis genome, while qPCR analysis showed its expression. Three transgenic lines of OsHKT1;5 were used for stress treatment and phenotypic studies. The overexpressed lines showed considerably higher germination rates, increased leaf counts, greater fresh and dry weights of the roots and shoots, higher chlorophyll contents, longer root lengths, and reduced Na levels together with increased K ions levels after salt and drought treatments, in comparison to wild-type plants. Furthermore, overexpressed lines exhibited higher antioxidant levels than wild-type plants under salinity and drought conditions. In addition, transgenic lines showed higher expression levels of the OsHKT1;5 gene in both roots and shoots compared to wild-type plants.
Conclusions: In conclusion, this study revealed OsHKT1;5 as a promising candidate for enhancing tolerance to salinity and drought stresses in rice, marking a significant step toward developing a new rice variety with improved abiotic stress tolerance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11033-024-10130-6 | DOI Listing |
Mol Biol Res Commun
January 2025
Department of Soil Science, College of Agriculture, Razi University, Kermanshah, Iran.
The bioremediation method is considered an economical and environmentally friendly strategy for the remediation of oil-contaminated soils. However, some oil field areas have extreme environmental conditions that make it difficult to establish microbes for bioreme-diation. In this study, bacteria were isolated from oil-contaminated soils of the Dehloran oil fields, which have very harsh soil and weather conditions.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
Department of Plant Molecular Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran. Electronic address:
Canola (Brassica napus sp.), the most important oily seed product in the world, is affected largely by salinity and drought stresses due to its ability to be planted in arid and semiarid regions. Therefore, studying potent genes involved in salt/drought stress response in canola would help improve abiotic stress tolerance.
View Article and Find Full Text PDFJ Exp Bot
December 2024
School of Biological Sciences, The University of Western Australia, Perth, WA 6009, Australia.
During their lifespan, plants are often exposed to a broad range of stresses that change their redox balance and lead to accumulation of reactive oxygen species (ROS). The traditional view is that this comes with negative consequences to cells structural integrity and metabolism and, to prevent this, plants evolved a complex and well-coordinated antioxidant defence system that relies on the operation of a range of enzymatic and non-enzymatic antioxidants (AO). Due to the simplicity of measuring their activity, and in the light of the persistent dogma that stress-induced ROS accumulation is detrimental for plants, it is not surprising that enzymatic AO have often been advocated as suitable proxies for stress tolerance, as well as potential targets for improving tolerance traits.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China. Electronic address:
Abiotic stresses, including drought, salinity, and temperature extremes, are serious constraints to plant growth and agricultural development. These stresses that plants face in nature are often multiple and complex. Biotin carboxyl carrier protein subunit 2 (BCCP2) is one of the two subunits of biotin carboxyl carrier protein, which is a functional subunit of acetyl coenzyme A carboxylase, primarily studied for its role in fatty acid synthesis.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
The present study has evaluated different soybean genotypes to understand the salt and drought tolerance mechanisms based on physiological traits (photosynthesis, stomatal conductance, chlorophyll, and cell membrane stability), antioxidant enzymes (superoxide dismutase, catalase, and peroxidase), reactive oxygen species (HO and O ), osmolytes (glycine betaine, proline, and Na/K), plant water relations (relative water content, water potential, and solute potential) and expression of related genes (, , , , , , , and ). The experiment was conducted in a two-factorial arrangement using randomized complete block design (RCBD) with genotypes as one factor and salt, drought, and control treatments as the other factor. All physiological traits, relative water content, and water potential decreased significantly in all soybean genotypes due to individual and combined treatments of drought and salt stress, with significantly less decrease in soybean genotypes G4620RX, DM45X61, and NARC-21.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!