High-performance near-infrared (NIR) light sources are highly sought after in advanced spectroscopy techniques, driving the development of NIR phosphor-converted light-emitting diodes (pc-LEDs). Escalating the luminescence intensity and thermal stability of NIR-emitting phosphors, which is a core component of NIR pc-LEDs, is of paramount importance. Herein, chemical unit cosubstitution and cosolvent addition tactics were implemented to simultaneously boost the NIR luminescence performance of the synthesized phosphors. The replacement of [Sc-Sc] for [Ca-Zr] in CaZrGeO:Cr likely reduces the antisite defects and offers a more rigid crystal structure. As a result, the emitting intensity is reinforced significantly, along with a remarkable improvement in thermal stability, acquiring 65% of the initial luminescence at 423 K compared with 42% for the primal sample. Moreover, the introduction of HBO further enhances NIR luminescence while maintaining a favorable thermal resistance. The encapsulated NIR pc-LED carries an impressive output power of 71.8 mW at 300 mA and a conversion efficiency up to 15.6% at 10 mA. The practical presentations in food checking, imaging, and detection manifest that CaScZrGeO:Cr,HBO is a promising material for spectroscopy-based technologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.4c04202 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!