MXenes is a rapidly emerging class of two-dimensional (2D) materials. It exhibits unique properties that make it suitable for a wide range of applications. This review provides a comprehensive overview of the synthesis and processing techniques for MXenes including both bottom-up and top-down approaches. The synthesis of MXene-based composites is explored in detail focusing on Mxene-carbon composites, Mxene-metal oxides, Mxene-metal sulfides, Mxene-polymer composites and MXene-ceramic composites. Key properties of MXenes are examined including structural, electrical, morphological, optical, mechanical, chemical stability, electrical and thermal properties, conductivity, magnetic properties, dielectric charge and catalytic properties. Characterization techniques used to study these properties is also reviewed. Their 2D structure provides a high surface area and unique interlayer spacing, making MXenes ideal for applications in energy storage devices (like supercapacitors and batteries) where surface area and ion transport are critical for performance. The diverse applications of MXenes are presented emphasizing their use in batteries, catalysis, sensors, environmental remediation and supercapacitors. Special attention is given to the supercapacitor applications of MXenes of their potential in energy storage devices. Due to their high capacitance, fast charge/discharge rates, and excellent stability, MXenes are used in supercapacitors, lithium-ion batteries, and sodium-ion batteries. They can store energy more efficiently than many other materials, making them valuable in the quest for efficient, sustainable energy solutions. The progress in MXene supercapacitor devices is providing insights into the latest advancements and future prospects. MXenes are highlighted as versatile materials with significant potential in various technological fields particularly in energy storage. Future research directions and challenges are also outlined for ongoing and future studies in this dynamic area of materials science.

Download full-text PDF

Source
http://dx.doi.org/10.1002/asia.202401181DOI Listing

Publication Analysis

Top Keywords

energy storage
16
mxenes
8
surface area
8
storage devices
8
applications mxenes
8
energy
6
properties
6
materials
5
applications
5
comprehensive review
4

Similar Publications

Mitigating anthropogenic climate change with aqueous green energy.

Sci Rep

January 2025

School of Earth and Ocean Sciences, University of Victoria, PO Box 1700, Victoria, BC, V8W 2Y2, Canada.

Reaching net zero emissions and limiting global warming to 2 °C requires the widespread introduction of technology-based solutions to draw down existing atmospheric levels and future emissions of CO. One such approach is direct air CO capture and storage (DACCS), a readily available, yet energy-intensive process. The combination of DACCS and ocean thermal energy conversion (OTEC) allows for independently powered carbon capture plants to inject concentrated carbon into deep marine sediments where storage is generally safe and permanent.

View Article and Find Full Text PDF

Overrated energy storage performances of dielectrics seriously affected by fringing effect and parasitic capacitance.

Nat Commun

January 2025

Hefei National Research Center for Physical Sciences at the Microscale, Department of Physics and CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, China.

Dielectric capacitors are vital for modern power and electronic systems, and accurate assessment of their dielectric properties is paramount. However, in many prevailing reports, the fringing effect near electrodes and parasitic capacitance in the test circuit were often neglected, leading to overrated dielectric performances. Here, the serious impacts of the fringing effect and parasitic capacitance are investigated both experimentally and theoretically on different dielectrics including AlO, SrTiO, etc.

View Article and Find Full Text PDF

Growing demand for air travel and limited scalable solutions pose significant challenges to the mitigation of aviation's climate change impact. Direct air capture (DAC) may gain prominence due to its versatile applications for either carbon removal (direct air carbon capture and storage, DACCS) or synthetic fuel production (direct air carbon capture and utilization, DACCU). Through a comprehensive and time-dynamic techno-economic assessment, we explore the conditions for synthetic fuels from DACCU to become cost-competitive with an emit-and-remove strategy based on DACCS under 2050 CO and climate neutrality targets.

View Article and Find Full Text PDF

This study investigated the effects of Chlamydomonas reinhardtii polysaccharides (CRPs) on retarding the retrogradation of japonica rice starch (JS) and glutinous rice starch (GS). Structure characterization revealed that CRPs, with an average molecular weight of 505 kDa, mainly consisted of glucose, mannose, and galactose and featured a triple-helix structure. CRPs could reduce the storage modulus increment of JS during the cooling process by interacting with amylose, thereby inhibiting gel network formation.

View Article and Find Full Text PDF

This study investigates the primary data collected at a used cooking oil (UCO) recycling facility to quantify its environmental impact when used as a rejuvenator in high content reclaimed asphalt pavement (RAP) mixes. Annual energy consumption data sets on transportation, storage, filtration, machinery, and purification are assessed using the life cycle assessment (LCA) methodology with the LCA software Simapro 9.4 to evaluate the influential parameters and processes in reducing emissions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!