Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: The TGF-β/SMAD signaling pathway is crucial in the pathogenesis of asthma. However, SMAD family member 4 (SMAD4), a key mediator of TGF-β, its roles and underlying mechanisms in asthma remain unclear.
Methods: The in vivo and in vitro roles of SMAD4 in asthma were investigated through an ovalbumin (OVA)-induced mouse model and an interleukin-13 (IL-13)-induced cell model. The molecular mechanism of SMAD4 influenced asthma was examined using transcriptome sequencing, followed by feedback experiments involving recombinant human interleukin 17 A (rhIL-17 A), an IL-17 A signaling pathway activator.
Results: SMAD4 was highly expressed in the asthma models. SMAD4 silencing alleviated damage to lung tissue and decreased inflammatory infiltration. Expression levels of Caspase-3, IgG, and inflammatory factors were reduced after silencing SMAD4. Silencing SMAD4 suppressed ferroptosis. Silencing SMAD4 also enhanced IL-13-induced BEAS-2B cell proliferation and suppressed apoptosis. Furthermore. IL-17 A signaling pathway was promoted in the asthma models, as evidenced by elevated IL-17RA, IL-17 A, and Act1 protein levels. SMAD4 silencing inhibited the expression levels of these IL-17 A pathway-associated proteins. Moreover, rhIL-17 A treatment notably reversed the impacts of SMAD4 silencing on asthma in the IL-13-induced cell model and OVA-induced mouse model, indicating that silencing SMAD4 inhibited inflammation and ferroptosis in asthma by blocking the IL-17 A signaling pathway.
Conclusion: Silencing SMAD4 prevents inflammation and ferroptosis in asthma by inhibiting the IL-17 pathway, which provides a novel potential approach for asthma therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11622552 | PMC |
http://dx.doi.org/10.1186/s12931-024-03052-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!