Planar Hall plateau in magnetic Weyl semimetals.

Sci Bull (Beijing)

Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China; Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China; International Center for Quantum Materials, Beijing Institute of Technology, Zhuhai 519000, China. Electronic address:

Published: November 2024

AI Article Synopsis

  • * This connection indicates that the PHE is stable across various conditions, unaffected by specific system details such as the Fermi energy, especially because magnetic Weyl points break time-reversal symmetry and have energy tilt.
  • * The research utilizes semiclassical Boltzmann theory to show that the PHE conductivity is related to the Chern number and energy tilt, predicting new quantized PHE plateaus, while also highlighting the rich interplay between topology and magnetism in this context.

Article Abstract

Despite the rapid progress in the study of planar Hall effect (PHE) in recent years, all the previous works only showed that the PHE is connected to local geometric quantities, such as Berry curvature. Here, for the first time, we point out that the PHE in magnetic Weyl semimetals is directly related to a global quantity, namely, the Chern number of the Weyl point. This leads to a remarkable consequence that the PHE observation predicted here is robust against many system details, including the Fermi energy. The main difference between non-magnetic and magnetic Weyl points is that the latter breaks time-reversal symmetry T, thus generally possessing an energy tilt. Via semiclassical Boltzmann theory, we investigate the PHE in generic magnetic Weyl models with energy tilt and arbitrary Chern number. We find that by aligning the magnetic and electric fields in the same direction, the trace of the PHE conductivity contributed by Berry curvature and orbital moment is proportional to the Chern number and the energy tilt of the Weyl points, resulting in a previously undiscovered quantized PHE plateau by varying the Fermi energy. We further confirm the existence of PHE plateaus in a more realistic lattice model without T symmetry. By proposing a new quantized physical quantity, our work not only provides a new tool for extracting the topological character of the Weyl points but also suggests that the interplay between topology and magnetism can give rise to intriguing physics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scib.2024.11.026DOI Listing

Publication Analysis

Top Keywords

magnetic weyl
16
chern number
12
weyl points
12
energy tilt
12
planar hall
8
weyl semimetals
8
phe
8
berry curvature
8
fermi energy
8
weyl
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!