Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Graphite Furnace-Atomic Absorption Spectrometry (GF-AAS) is a powerful technique for trace element analysis, offering high sensitivity and precision. However, its effectiveness is limited by sample preparation challenges for solid samples like soils and microplastics. Traditional methods include sample preparation, such as digestion, which is time-consuming and involves reagents, like acids, contributing to measurement uncertainty and higher carbon footprints. Slurry sampling allows direct analysis of suspensions, offering a more efficient alternative. However, maintaining suspension stability is challenging, requiring robust autosampler systems to streamline the process and enhance analytical performance.
Results: We present a novel autosampler extension for slurry sample introduction into GF-AAS. This system ensures suspension stability with a stirring device and closed vessels to prevent evaporation and contamination, incorporating a cooling unit to reduce solvent and analyte losses. It installs and removes in minutes without additional connections. Validation with cadmium analysis in BAM-U110 (Soil) and BAM-H010 (ABS) showed high reliability. For BAM-U110 (Soil), we achieved recovery rates of 94 % ± 13 % in water suspension. The recovery rate for BAM-H010 (ABS) was 104 % ± 11 % in acetonitrile suspension. These results demonstrate the system's robustness, versatility, and accuracy for different matrices.
Significance: The autosampler extension helps solve key problems in trace element analysis of solid samples, making the process faster and more accurate. It works well with complex materials, making it useful for areas like microplastic or nanoparticle analysis. This improvement also helps meet regulations for monitoring environmental and polymer samples, offering a reliable and flexible tool for high-throughput analysis with fewer errors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2024.343460 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!