Introduction: The presence of Clostridioides difficile in water, soil, fertilizers, and animal feces suggests the potential existence of C. difficile in foods that come into contact with these sources or become contaminated through indirect means.

Material & Method: A total of 431 samples, consisting of spinach and carrots and raw milk and cheese obtained from cows, goats, buffalo, and sheep, were examined for the presence of C. difficile. Isolates were identified by real-time PCR, ribotyped, and their toxin profiles were determined. Antibiotic susceptibility to vancomycin, clindamycin, and metronidazole was evaluated using the E-test.

Results: C. difficile was detected in 3.27 % (4/122) of spinach, 1.85 % (2/108) of carrots, and 2.19 % (2/91) of milk samples. No C. difficile was detected in the cheeses (n = 110). All isolates were obtained from different fields/farms. Only one isolate (from spinach) carried the tcdA and tcdB toxin genes. Six different PCR ribotypes were detected, with two (001, 060) being identified. All isolates were sensitive to vancomycin, clindamycin, and metronidazole.

Conclusion: The prevalence of C. difficile in spinach, carrot, and milk samples from selected regions was low, and nontoxigenic strains were prevalent. Despite the low prevalence, the detection of C. difficile in these foods highlights the potential risk of foodborne transmission of this pathogen and underscores the need for monitoring and control strategies to ensure food safety.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.anaerobe.2024.102933DOI Listing

Publication Analysis

Top Keywords

presence clostridioides
8
difficile
8
clostridioides difficile
8
difficile spinach
8
spinach carrots
8
difficile foods
8
vancomycin clindamycin
8
difficile detected
8
milk samples
8
spinach
5

Similar Publications

Disclaimer: In an effort to expedite the publication of articles, AJHP is posting manuscripts online as soon as possible after acceptance. Accepted manuscripts have been peer-reviewed and copyedited, but are posted online before technical formatting and author proofing. These manuscripts are not the final version of record and will be replaced with the final article (formatted per AJHP style and proofed by the authors) at a later time.

View Article and Find Full Text PDF

A cell-free gene expression system for prototyping and gene expression analysis.

Appl Environ Microbiol

December 2024

Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA.

Article Synopsis
  • The study introduces a cell-free gene expression (CFE) system that allows for transcription and translation of a specific anaerobic bacterium in the presence of oxygen, simplifying gene expression analysis.
  • Through optimizing cell extract preparation, the researchers significantly increased protein yields, finding that linear DNA templates yield better results than circular plasmids.
  • The CFE system shows promise for prototyping and investigating genetic expressions related to toxin production, particularly in hypervirulent strains linked to antibiotic resistance.
View Article and Find Full Text PDF

Infections and Factors Associated with Recurrence.

Infect Dis Clin Microbiol

December 2024

Department of Medical Microbiology, Giresun University School of Medicine, Giresun, Türkiye.

Objective: is one of the leading causes of antibiotic-associated diarrhea. Recurrent infection (rCDI) is significant because of prolonged hospital stays, morbidity, and additional costs. Our study aimed to examine the characteristics of infections and investigate factors associated with recurrence.

View Article and Find Full Text PDF

is a common etiological factor of hospital infections, which, in extreme cases, can lead to the death of patients. Most strains belonging to this bacterium species synthesize very dangerous toxins: toxin A (TcdA) and B (TcdB) and binary toxin (CDT). The aim of this study was to assess the suitability of agarose gel electrophoresis separation of multiplex PCR amplicons to investigate the toxinogenic potential of strains.

View Article and Find Full Text PDF

Efficacy of copper-impregnated antimicrobial surfaces against spores.

Infect Control Hosp Epidemiol

December 2024

Department of Medicine, Central Texas Veterans Health Care System, Temple, TX, USA.

Objective: () is one of the most common causes of healthcare-associated infections (HAIs). Elimination of spores is difficult as they are resistant to common hospital-grade disinfectants. Copper-impregnated surfaces provide continuous reduction of multiple pathogens, potentially lowering the risk of infections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!