A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

3D printing of stiff, tough, and ROS-scavenging nanocomposite hydrogel scaffold for in situ corneal repair. | LitMetric

3D printing of stiff, tough, and ROS-scavenging nanocomposite hydrogel scaffold for in situ corneal repair.

Acta Biomater

State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao 266071, China; Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan 250021, China. Electronic address:

Published: December 2024

Despite significant advancements in hydrogels in recent years, their application in corneal repair remains limited by several challenges, including unfitted curvatures, inferior mechanical properties, and insufficient reactive oxygen species (ROS)-scavenging activities. To address these issues, this study introduces a 3D-printed corneal scaffold with nanocomposite hydrogel consisting of gelatin methacrylate (GelMA), poly (ethylene glycol) diacrylate (PEGDA), Laponite, and dopamine. GelMA and PEGDA act as matrix materials with photo-crosslinking abilities. As a two-dimensional nanoclay, Laponite enhances the rheological properties of the hydrogel, making it suitable for 3D printing. Dopamine self-polymerizes into polydopamine (PDA), providing the hydrogel with ROS-scavenging activity. The incorporation of Laponite and the synergistic effect of PDA endow the hydrogel with good mechanical properties. In vitro investigations demonstrated the cytocompatibility of GelMA-PEGDA-Laponite-dopamine (GPLD) hydrogel and its ROS-scavenging activity. Furthermore, in vivo experiments using a rabbit model of lamellar keratoplasty showed accelerated corneal re-epithelialization and complete stromal repair after the implantation of the 3D-printed scaffold. Overall, due to its high bioactivity and simple preparation, the 3D-printed scaffold using GPLD hydrogel offers an alternative for corneal repair with potential for clinical translation. STATEMENT OF SIGNIFICANCE: The clinical application of hydrogel corneal scaffolds has been constrained by their inadequate mechanical properties and the complex microenvironment created by elevated levels of ROS post-transplantation. In this study, we developed a kind of nanocomposite hydrogel by integrating Laponite and dopamine into GelMA and PEGDA. This advanced hydrogel was utilized to 3D print a corneal scaffold with high mechanical strength and ROS-scavenging abilities. When applied to a rabbit model of lamellar keratoplasty, the 3D-printed scaffold enabled complete re-epithelialization of the cornea within one week. Three months after surgery, the corneal stroma was fully repaired, and regeneration of corneal nerve fibers was also observed. This 3D-printed scaffold demonstrated exceptional efficacy in repairing corneal defects with potential for clinical translation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2024.12.005DOI Listing

Publication Analysis

Top Keywords

3d-printed scaffold
16
nanocomposite hydrogel
12
corneal repair
12
mechanical properties
12
hydrogel
10
corneal
10
corneal scaffold
8
laponite dopamine
8
dopamine gelma
8
gelma pegda
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!