Herein, a mesoporous magnetic chitosan-salicylaldehyde/calcium oxide nanoparticle (CS-SL/CaO/FeO) biocomposite adsorbent that was prepared via freeze-drying. The CS-SL/CaO/FeO was utilized for the adsorption of ramazol brilliant blue (RBB) dye from aqueous solution. The physicochemical properties of the CS-SL/CaO/FeO were evaluated using diverse characterization techniques, including BET, XRD, FTIR, FESEM-EDX, CHNS, and pH. The three main factors for adsorption included the following A: CS-SL/CaO/FeO dosage (0.02-0.1 g/100 mL), B: pH (4-10), and C: Time (60-540 min). These factors were improved using statistical methods, specifically the Box-Behnken design (BBD). The optimal conditions for achieving maximum RBB removal (62.5 %) are listed: CS-SL/CaO/FeO dosage of 0.1 g/100 mL, a solution pH of 7, and a contact time of 540 min. The adsorption kinetics and equilibrium isotherms were well described by the pseudo first order (PFO) kinetic and Langmuir isotherm models, respectively. Thus, the CS-SL/CaO/FeO material has a maximum adsorption capacity (q) of 63.3 mg/g for RBB at 25 °C. The adsorption mechanism of RBB onto the CS-SL/CaO/FeO surface was attributed to electrostatic forces, n-π stacking, H-bonding, and Pi-Pi interactions. Thus, CS-SL/CaO/FeO represents a recoverable magnetic adsorbent with potential for capture of organic dyes from wastewater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.138373 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China.
Emulsion interface engineering has been widely employed for the synthesis of nanomaterials with various morphologies. However, the instability of the liquid-liquid interface and uncertain interfacial interactions impose significant limitations on controllable fabrications. Here, we developed a liquid-nano-liquid interface-oriented anisotropic encapsulation strategy for fabricating asymmetric nanohybrids.
View Article and Find Full Text PDFMolecules
December 2024
State Key Laboratory of Continental Shale Oil, Northeast Petroleum University, Daqing 163318, China.
Due to the complex physical properties of low-permeability glutenite reservoirs, the oil recovery rate with conventional development is low. Surfactants are effective additives for enhanced oil recovery (EOR) due to their good ability of wettability alteration and interfacial tension (IFT) reduction, but the reason why imbibition efficiencies vary with different types of surfactants and the mechanism of enhanced imbibition in the glutenite reservoirs is not clear. In this study, the imbibition efficiency and recovery of surfactants including the nonionic, anionic, and cationic surfactants as well as nanofluids were evaluated and compared with produced water (PW) using low-permeability glutenite core samples from the Lower Urho Formation in the Mahu oil field.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Chemistry, University of Delhi-110007, New Delhi, India.
Wastewater contamination by organic dyes, especially Rhodamine B (RhB), possess a significant environmental challenge. This study explores a novel bio sorbent for the removal of RhB dye from contaminated water, using chitosan trisodium citrate-modified magnetic nanoparticles (Fe₃O₄@CSTSC@PANI) coated with polyaniline. The nanocomposite was characterized by FT-IR, XRD, HRTEM, SEM, BET surface analysis.
View Article and Find Full Text PDFSmall
December 2024
College of Material Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
Lithium-sulfur batteries (LSBs) face challenges from the shuttle effect of lithium polysulfides (LiPSs) and slow redox kinetics. In this study, a NiCo-Doped 3D Ordered Mesoporous Carbon (NiCo-3DOMC) composite material is synthesized using a gel-crystalline template and sol-gel method to modify polypropylene separators in LSBs. Density Functional Theory calculations and experiment results demonstrate that under a magnetic field, the NiCo-3DOMC enhances adsorption and catalyzes the conversion of LiPSs, effectively mitigating the shuttle effect and boosting redox kinetics.
View Article and Find Full Text PDFDrug Discov Today
December 2024
Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Ft. Lauderdale, FL 33328-2018, USA. Electronic address:
Magnetic polymeric nanocomposites are a modern class of materials in which magnetic nanoparticles are embedded in a polymeric matrix. This combination of magnetic responsiveness and tuneable properties bestows versatility on this class of polymer nanocomposite material, which has potentially broad applications in drug delivery, imaging, environmental remediation and beyond. This review covers the uses of magnetic polymeric nanocomposites in drug delivery, discussing magnetic micelles, magnetic liposomes, magnetic hydrogels, magnetic sponges, magnetic mesoporous silica nanoparticles, magnetic microrobots, magnetic elastomers and magnetic scaffolds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!