The therapeutic potential of recombinant ANGPTL4 in Parkinson's disease: Evidence from in vivo and in vitro studies.

Free Radic Biol Med

Department of Basic Medicine, Institute of Translational Medicine, Medical College, Yangzhou University, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China. Electronic address:

Published: December 2024

Background: The established body of knowledge attests to the pivotal influence of ANGPTL4 on lipid metabolism and vascular biology. Nevertheless, its potential implication in neurodegenerative disease remains to be fully characterized.

Methods: The present investigation delves into the involvement of ANGPTL4 in the pathological progression of PD, both in vitro and in vivo. PD models were induced by intraperitoneal administration of MPTP and LPS in WT and ANGPTL4 mice. Additionally, rANGPTL4 was administered intravenously via the tail. Primary microglia cells cultured from the SNpc and Str regions of brains were exposed to LPS to induce neuroinflammation.

Results: The observations unveiled that ANGPTL4 deficiency exacerbated behavioral aberrations, intensified dopaminergic neuron loss, and stimulated microglial activation along with p21-dependent senescence. There was an elevation in the expression of proinflammatory cytokines in the PD model. Furthermore, the administration of rANGPTL4 protein reversed the observed phenotypes in ANGPTL4 mice, a phenomenon further validated in LPS-induced cells. Clinical specimens also manifested diminished levels of ANGPTL4 expression in PD patients. ANGPTL4 demonstrated the ability to alleviate neuroinflammation by suppressing EIF2-JNK-mediated ER stress and eliminating senescent cells.

Conclusion: Our findings posit a salutary role for ANGPTL4 in counteracting PD, rendering it a prospective therapeutic target for the development of innovative drugs aimed at treating neuroinflammation-associated neurological diseases, including PD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2024.12.009DOI Listing

Publication Analysis

Top Keywords

angptl4
9
angptl4 mice
8
therapeutic potential
4
potential recombinant
4
recombinant angptl4
4
angptl4 parkinson's
4
parkinson's disease
4
disease evidence
4
evidence vivo
4
vivo vitro
4

Similar Publications

The tertiary structure of normal podocytes prevents protein from leaking into the urine. However, observing the complexity of podocytes is challenging because of the scale differences in their three-dimensional structure and the close proximity between neighboring cells in space. In this study, we explored podocyte-secreted angiopoietin-like 4 (ANGPTL4) as a potential morphological marker via super-resolution microscopy (SRM).

View Article and Find Full Text PDF

Pemafibrate Induces a Low Level of PPARα Agonist-Stimulated mRNA Expression of ANGPTL4 in ARPE19 Cell.

Bioengineering (Basel)

December 2024

Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan.

To elucidate the unidentified roles of a selective peroxisome proliferator-activated receptor α (PPARα) agonist, pemafibrate (Pema), on the pathogenesis of retinal ischemic diseases (RID)s, the pharmacological effects of Pema on the retinal pigment epithelium (RPE), which is involved in the pathogenesis of RID, were compared with the pharmacological effects of the non-fibrate PPARα agonist GW7647 (GW). For this purpose, the human RPE cell line ARPE19 that was untreated (NT) or treated with Pema or GW was subjected to Seahorse cellular metabolic analysis and RNA sequencing analysis. Real-time cellular metabolic function analysis revealed that pharmacological effects of the PPARα agonist actions on essential metabolic functions in RPE cells were substantially different between Pema-treated cells and GW-treated cells.

View Article and Find Full Text PDF

Acute rejection (AR) is a significant complication in liver transplantation, impacting graft function and patient survival. Kupffer cells (KCs), liver-specific macrophages, can polarize into pro-inflammatory M1 or anti-inflammatory M2 phenotypes, both of which critically influence AR outcomes. Angiopoietin-like 4 (ANGPTL4), a secretory protein, is recognized for its function in regulating inflammation and macrophage polarization.

View Article and Find Full Text PDF

Fetal growth restriction (FGR) is a common complication of pregnancy, which seriously endangers fetal health and still lacks effective therapeutic targets. Clostridium difficile (C. difficile) is associated with fetal birth weight, and its membrane vesicles (MVs) are pathogenic vectors.

View Article and Find Full Text PDF

Clinically heterogeneous spectrum and molecular phenotypes of inflammatory bowel disease (IBD) remain to be comprehensively elucidated. This exploratory multi-omics study investigated the serum molecular profiles of Crohn's disease (CD) and ulcerative colitis (UC), in association with elevated fecal calprotectin and disease activity states. The serum proteome, metabolome, and lipidome of 75 treated IBD patients were profiled.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!