Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Traffic flow prediction is the foundation of intelligent traffic management systems. Current methods prioritize the development of intricate models to capture spatio-temporal correlations, yet they often neglect the exploitation of latent features within traffic flow. Firstly, the correlation among different road nodes exhibits dynamism rather than remaining static. Secondly, traffic data exhibits evident periodicity, yet current research lacks the exploration and utilization of periodic features. Lastly, current models typically rely solely on historical data for modeling, resulting in the limitation of accurately capturing future trend changes in traffic flow. To address these findings, this paper proposes a Periodic Dynamic Graph to Sequence Model (PDG2Seq) for traffic flow prediction. PDG2Seq consists of the Periodic Feature Selection Module (PFSM) and the Periodic Dynamic Graph Convolutional Gated Recurrent Unit (PDCGRU) to further extract the spatio-temporal features of the dynamic real-time traffic. The PFSM extracts learned periodic features using time points as indices, while the PDCGRU leverages the extracted periodic features from the PFSM and dynamic features from traffic flow to generate a Periodic Dynamic Graph for extracting spatio-temporal features. In the decoding phase, PDG2Seq utilizes periodic features corresponding to the prediction target to capture future trend changes, leading to more accurate predictions. Comprehensive experiments conducted on four large-scale datasets substantiate the superiority of PDG2Seq over existing state-of-the-art baselines. Related codes are available at https://github.com/wengwenchao123/PDG2Seq.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neunet.2024.106941 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!