Background: Colorectal cancer (CRC) development is a complex, multi-stage process, transitioning from normal to adenomatous tissue, and then to invasive carcinoma. Despite research, there's a knowledge gap on using high-resolution spatial omics to understand CRC's tumor microenvironment dynamics.

Methods: We used single-cell transcriptomics to study major biological changes and cell interactions in CRC progression. Additionally, high-resolution spatial transcriptomics helped us examine the spatial distribution of cells with significant pathway changes, offering insights into the tumor microenvironment's development throughout CRC stages.

Results: In the progression of CRC, plasma cells, neutrophils, and fibroblasts exhibit the most significant changes in hallmark pathways, while epithelial cells show the most pronounced alterations in metabolic pathways. We also identified a population of NOTUM + epithelial cells and IGHG1/3 + plasma cells that are concentrated at the boundary between normal tissue and adenomas. Pathway analysis further suggests that these NOTUM + cells activate numerous cancer-related pathways, despite the absence of significant pathological morphological changes. Additionally, we conducted a targeted drug prediction analysis to identify potential therapeutic agents for NOTUM-expressing epithelial cells.

Conclusions: Analyzing scRNA-seq and Visium HD data, we found that IGHG1/3 + plasma cells and tumor-associated neutrophil (TANs) may significantly affect colorectal tissue transformation from normal to adenoma and carcinoma. These cells are concentrated at the transition between normal and adenomatous tissue. We also found NOTUM-expressing cells at the edge of normal and adenomatous areas, possibly indicating a morphological transition as normal cells evolve into adenoma cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2024.113752DOI Listing

Publication Analysis

Top Keywords

normal adenomatous
12
cells
10
scrna-seq visium
8
tumor microenvironment
8
colorectal cancer
8
adenomatous tissue
8
high-resolution spatial
8
ighg1/3 + plasma cells
8
cells concentrated
8
transition normal
8

Similar Publications

Background: Colorectal cancer (CRC) development is a complex, multi-stage process, transitioning from normal to adenomatous tissue, and then to invasive carcinoma. Despite research, there's a knowledge gap on using high-resolution spatial omics to understand CRC's tumor microenvironment dynamics.

Methods: We used single-cell transcriptomics to study major biological changes and cell interactions in CRC progression.

View Article and Find Full Text PDF

Objective: Sevoflurane (Sevo), a commonly used inhalant anesthetic clinically, is associated with a worsened cancer prognosis, and we investigated its effect on RNA methylase tRNA aspartic acid methyltransferase 1 (TRDMT1) expression and ovarian cancer (OC) cell malignant phenotypes.

Methods: Human OC cells (OVCAR3/SKOV3) were pretreated with 3.6% Sevo and cultured under normal conditions for 48 h, with their viability assessed.

View Article and Find Full Text PDF

Objective: The high morbidity and mortality associated with colorectal cancer (CRC) and the recent increases in early-onset CRC obviate the need for novel methods to detect and treat this disease, particularly at early stages. We hypothesize that aberrant expression of genes involved in the crypt-luminal migration of colon epithelial cells, a process necessary for their growth arrest and maturation, may disrupt differentiation and transition cells from a normal to tumorigenic state.

Methods: We searched for contractility- and motility-related genes that are dysregulated in human CRC relative to normal colon.

View Article and Find Full Text PDF
Article Synopsis
  • Aberrant epigenetic changes, specifically in DNA methylation and non-coding RNAs, play a significant role in the development of parathyroid tumors, particularly concerning the genes RASSF1A and APC, which are often downregulated in cancers.
  • In a study of parathyroid adenomas and carcinomas, RASSF1A promoter methylation was found in approximately 90% of adenomas and was inversely related to tumor size; however, APC methylation appeared less frequently.
  • The research concluded that the methylation of RASSF1A and APC is a common feature in parathyroid tumors, with the activity of DNA methyltransferases affecting
View Article and Find Full Text PDF

Colorectal cancer (CRC) is the third leading cause of cancer mortality in the United States. Familial adenomatous polyposis (FAP) is a hereditary syndrome that raises the risk of developing CRC, with total colectomy as the only effective prevention. Even though FAP is rare (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!