A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Topological states in finite graphene nanoribbons tuned by electric fields. | LitMetric

Topological states in finite graphene nanoribbons tuned by electric fields.

J Phys Condens Matter

Department of Electrical Engineering and Department of Physics, National Central University, Chungli 32001, Taiwan.

Published: December 2024

AI Article Synopsis

  • * We observe a blue Stark shift in energy levels for formal topological states, while the interface states exhibit an oscillatory Stark shift around the Fermi level.
  • * Our findings highlight the impact of the Stark effect on transmission coefficients and suggest that electric fields can control coupling strength in topological interface states, offering insights for future electronic devices and quantum technologies.

Article Abstract

In this comprehensive study, we conduct a theoretical investigation into the Stark shift of topological states (TSs) in finite armchair graphene nanoribbons (AGNRs) and heterostructures under transverse electric fields. Our focus centers on the multiple end zigzag edge states of AGNRs and the interface states of9--7--9AGNR heterostructures. For the formal TSs, we observe a distinctive blue Stark shift in energy levels relative to the electric field within a range where the energy levels of TSs do not merge into the energy levels of bulk states. Conversely, for the latter TSs, we identify an oscillatory Stark shift in energy levels around the Fermi level. Simultaneously, we reveal the impact of the Stark effect on the transmission coefficients for both types of TSs. Notably, we uncover intriguing spectra in the multiple end zigzag edge states. In the case of finite9--7--9AGNR heterostructures, the spectra of transmission coefficient reveal that the coupling strength between the topological interface states can be well controlled by the transverse electric fields. The outcomes of this research not only contribute to a deeper understanding of the electronic property in graphene-based materials but also pave the way for innovations in next-generation electronic devices and quantum technologies.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/ad9b62DOI Listing

Publication Analysis

Top Keywords

energy levels
16
electric fields
12
stark shift
12
topological states
8
graphene nanoribbons
8
transverse electric
8
multiple zigzag
8
zigzag edge
8
edge states
8
interface states
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!