A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Research on high-temperature fast pyrolysis of waste printed circuit boards for gas release and carbon structure evolution. | LitMetric

Research on high-temperature fast pyrolysis of waste printed circuit boards for gas release and carbon structure evolution.

Waste Manag

State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China.

Published: December 2024

Pyrometallurgy has proven to be a highly effective method for the large-scale recycling of waste printed circuit boards (WPCB) in industrial settings. This study focused on the fast pyrolysis characteristics of WPCB at smelting temperatures and characterized the gas product release behavior and solid product features in detail. The results indicate that the pyrolysis gas was mainly composed of H, CH and CO, and the maximum yield of pyrolysis gas was obtained at 1300 °C, which was 233.66 mL/g. The retention of copper and tin decreased from 98.61 % and 92.39 % to 87.98 % and 70.66 %, respectively, when the temperature increased from 800 °C to 1300 °C. The structure of the glass fibers in the WPCB remained invariant, whereas the carbon fraction progressively tended to graphitize. The results of Py-GC/MS analysis indicate that high temperatures and extended residence times were more favorable for the formation of small molecules such as alkenes and aromatics and inhibited the production of brominated contaminants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2024.11.041DOI Listing

Publication Analysis

Top Keywords

fast pyrolysis
8
waste printed
8
printed circuit
8
circuit boards
8
pyrolysis gas
8
high-temperature fast
4
pyrolysis
4
pyrolysis waste
4
gas
4
boards gas
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!