One of the pillars of modern science is the concept of symmetries. Spontaneously breaking such symmetries gives rise to non-trivial states, which can explain a variety of phenomena around us. Chimera states, characterized by the coexistence of localized synchronized and unsynchronized dynamics, are a novel example. This Focus Issue covers recent developments in the study of chimera states, from both theoretical and experimental points of view, including an emphasis on prospective practical realization for application in technology and living systems.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0249682DOI Listing

Publication Analysis

Top Keywords

chimera states
12
focus issue
8
technology living
8
living systems
8
introduction focus
4
issue chimera
4
states
4
states theory
4
theory experiments
4
experiments technology
4

Similar Publications

Exploring continuous time crystals (CTCs) within the symmetric subspace of spin systems has been a subject of intensive research in recent times. Thus far, the stability of the time-crystal phase outside the symmetric subspace in such spin systems has gone largely unexplored. Here, we investigate the effect of including the asymmetric subspaces on the dynamics of CTCs in a driven dissipative spin model.

View Article and Find Full Text PDF

Lanthanides, which are part of the rare earth elements group have numerous applications in electronics, medicine and energy storage.  However, our ability to extract them is not meeting the rapidly increasing demand. The discovery of the bacterial periplasmic lanthanide-binding protein lanmodulin spurred significant interest in developing biotechnological routes for lanthanide detection and extraction.

View Article and Find Full Text PDF

Primordial germ cells (PGCs) play a crucial role in transmitting genetic information to the next-generation. In chickens, genetically edited PGCs can be propagated and subsequently transplanted into recipient embryos to produce offspring with desired genetic traits. However, during early embryogenesis, the effects of external conditions on PGC migration through the vascular system to the gonads have yet to be explored, which may affect the efficiency of preparing gene-edited chickens.

View Article and Find Full Text PDF

Investigating the intrinsic top-down dynamics of deep generative models.

Sci Rep

January 2025

Department of General Psychology and Padova Neuroscience Center, University of Padova, Padova, Italy.

Hierarchical generative models can produce data samples based on the statistical structure of their training distribution. This capability can be linked to current theories in computational neuroscience, which propose that spontaneous brain activity at rest is the manifestation of top-down dynamics of generative models detached from action-perception cycles. A popular class of hierarchical generative models is that of Deep Belief Networks (DBNs), which are energy-based deep learning architectures that can learn multiple levels of representations in a completely unsupervised way exploiting Hebbian-like learning mechanisms.

View Article and Find Full Text PDF

Hydrothermal sediments host phylogenetically diverse and physiologically complex microbial communities. Previous studies of microbial community structure in hydrothermal sediments have typically used short-read sequencing approaches. To improve on these approaches, we use LoopSeq, a high-throughput synthetic long-read sequencing method that has yielded promising results in analyses of microbial ecosystems, such as the human gut microbiome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!