An efficient regeneration system was established through somatic embryogenesis and shoot organogenesis using mature embryos explants of peanut cultivar 'Georgia-12Y'. The role of plant growth regulator combinations was investigated for embryogenic callus and somatic embryo induction. Results showed that Murashige and Skoog (MS) medium supplemented with 20 μM picloram (4-amino 3, 5, 6-trichloropicolinic acid), casein hydrolysate (0.2 g/L), sucrose (30 g/L) and sorbitol (10 g/L) supported callus induction in dark and higher number of somatic embryos in light. No somatic embryos were induced at 0.1 μM to 10.0 μM of 2,4-Dichloro phenoxy acetic acid (2,4-D) and picloram individually. The highest regeneration frequency of 90% was recorded on 40 μM 2,4-D + casein hydrolysate (0.2 g/L), sucrose (30 g/L) and sorbitol (10 g/L). The plantlets regenerated via somatic embryogenesis did not exhibit any morphological abnormalities. Double staining with acetocarmine and Evans blue distinguished between embryogenic and non-embryogenic callus. Histological observations confirmed distinct developmental stages of somatic embryos. On the other hand, highest number of shoots were induced in response to MS + 15 μM thidiazuron (TDZ) among various treatments tested. Incubation of shoots on plant growth regulator free MS medium induced in-vitro flowering after 12 weeks under light conditions. The induction of embryogenic and morphogenic callus and production of fertile peanut plants using manipulations of various plant growth regulators is reported on peanut cultivar 'Georgia- 12Y'.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623556 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0315060 | PLOS |
PLoS Genet
January 2025
Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein- Kerem Campus, Jerusalem, Israel.
Germ cells are essential for fertility, embryogenesis, and reproduction. Germline development requires distinct types of germ granules, which contains RNA-protein (RNP) complexes, including germ plasm in embryos, piRNA granules in gonadal germ cells, and the Balbiani body (Bb) in oocytes. However, the regulation of RNP assemblies in zebrafish germline development are still poorly understood.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea.
Plants (Basel)
December 2024
State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
Roses are one of the most important flowers applied to landscape, cut flowers, fragrance and food industries widely. As an effective method for plant reproduction, the regeneration via somatic embryos is the most promising method for breed improvement and genetic transformation of woody plants. However, lower somatic embryogenesis (SE) induction rates and genotypic constraints impede progress in genetic transformation in rose.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea.
The increasing emphasis on animal welfare and ethics, as well as the considerable time and cost involved with animal testing, have prompted the replacement of many aspects of animal testing with alternative methods. In the area of developmental toxicity, the embryonic stem cell test (EST) has played a significant role. The EST evaluates toxicity using mouse embryonic stem cells and somatic cells and observes the changes in heartbeat after cardiac differentiation.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Plant Physiology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia.
Rafn. is a medicinal plant used as a model for studying plant developmental processes due to its developmental plasticity and ease of manipulation in vitro. Identifying the genes involved in its organogenesis and somatic embryogenesis (SE) is the first step toward unraveling the molecular mechanisms underlying its morphogenic plasticity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!