In recent years, different laboratories have provided evidence on the role of miRNAs in regulation of corneal epithelial metabolism, permeability and wound healing, as well as their alteration after surgery and in some ocular pathologies. We searched the available databases reporting miRNA expression in the human eye, looking for miRNAs highly expressed in central cornea, which could be crucial for maintenance of the epithelial phenotype. Using the rabbit RCE1(5T5) cell line as a model of corneal epithelial differentiation, we describe the participation of miR-141-3p as a possible negative regulator of the proliferative/migratory phenotype in corneal epithelial cells. The expression of miR-141-3p followed a time course similar to the differentiation-linked KRT3 cytokeratin, being delayed 24-48 hours relative to PAX6 expression; such result suggested that miR-141-3p only regulates the expression of terminal phenotype. Inhibition of miR-141-3p led to increased cell proliferation and motility, and induced the expression of molecular makers characteristic of an Epithelial Mesenchymal Transition (EMT). Comparison between the transcriptional profile of cells in which miR-141-3p was knocked down, and the transcriptomes from proliferative non-differentiated and differentiated stratified epithelia suggest that miR-141-3p is involved in the expression of terminal differentiation mediating the arrest of cell proliferation and inhibiting the EMT in highly motile early differentiating cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623785 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0315296 | PLOS |
Health Phys
January 2025
Division of Vision Research for Environmental Health, Medical Research Institute and Department of Ophthalmology, Kanazawa Medical University, Kahoku, Japan.
Electromagnetic radiation energy at millimeter wave frequencies, typically 30 GHz to 300 GHz, is ubiquitously used in society in devices for telecommunications; radar and imaging systems for vehicle collision avoidance, security screening, and medical equipment; scientific research tools for spectroscopy; industrial applications for non-destructive testing and precise measurement; and military and defense applications. Understanding the biological effects of this technology is essential. We have been investigating ocular responses and damage thresholds comparing various frequencies using rabbit eyes and dedicated experimental apparatus.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Homburg/Saar, Germany, Saarland University, Homburg/Saar, Germany.
Purpose: This study evaluates the microRNA (miRNA) expression profile in primary limbal epithelial cells (pLECs) of patients with aniridia.
Methods: Primary human LECs were sampled and isolated from 10 patients with aniridia and 10 healthy donors. The miRNA profile was analyzed using miRNA microarrays.
Invest Ophthalmol Vis Sci
January 2025
State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China.
Purpose: Protein arginine methyltransferase 1 (PRMT1) is an integral constituent of numerous cellular processes. However, its role in corneal epithelial wound healing (CEWH) remains unclear. This study investigates the impact of PRMT1 on cellular mechanisms underlying corneal epithelial repair and its potential to improve wound healing outcomes.
View Article and Find Full Text PDFCell Tissue Bank
January 2025
Academic Ophthalmology, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK.
Globally there is a shortage of available donor corneas with only 1 cornea available for every 70 needed. A large limitation to corneal transplant surgery is access to quality donor tissue due to inadequate eye donation services and infrastructure in many countries, compounded by the fact that there are few available long-term storage solutions for effectively preserving spare donor corneas collected in countries with a surplus. In this study, we describe a novel technology termed low-temperature vacuum evaporation (LTVE) that can effectively dry-preserve surplus donor corneal tissue, allowing it to be stored for approximately 5 years, shipped at room temperature, and stored on hospital shelves before rehydration prior to ophthalmic surgery.
View Article and Find Full Text PDFJ Cyst Fibros
January 2025
Pulmonology Department, Regional University Hospital of Malaga, Department of Medicine and Dermatology, University of Malaga, Biomedical Research Institute of Malaga (IBIMA) - Bionand Platform, Malaga, Spain. Electronic address:
Background: Cystic fibrosis (CF) is caused by variants in a gene that encodes a protein essential for water and ion transport in the epithelial cells of exocrine organs. Given the possible relationship of this protein and conjunctival and corneal epithelium, the aim of this study was to evaluate ophthalmologic alterations in people with CF.
Methods: Forty-five people with CF underwent pulmonary evaluation including inflammatory score (IS).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!