The present study involved the preparation of a nano-polymer based on shrimp wastes as a biodegradable chitosan nanoparticle (Cs) incorporated into titanium oxide nanoparticles (TiO) in an aqueous medium and carried on the specific polymer to form thin films. The spectroscopic properties of chitosan/TiO/Polymer thin films were estimated by transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectroscopy. The fabricated films were then examined for their potential to eliminate iron (Fe) and chromium (Cr) from solutions. The adsorption efficiency was also evaluated along various contact times. In general, the results illustrated that the heavy metals removal increases with increasing the different ratios of chitosan and TiO nanoparticles incorporated in polymer thin films. Removal efficiency increased with an increase in contact time. More than 70% of Fe and Cr ions were removed in the first 30 min of contact time using different thin films examined. The maximum removal for metal ions after 90 min for the pest thin film (0.08 TiO) was 97.1 and 88.8% for Fe and Cr, whereas the lowest thin film removal efficiency (PVC) was 29.5 and 8.07% for Fe and Cr, respectively. In conclusion, the fabricated thin film composed of polyvinylidene chloride and chitosan plus 0.08 g titanium oxide nanoparticles had a heavy metal removal capacity three times greater than that of basic polyvinylidene chloride.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-024-35455-4 | DOI Listing |
Sci Rep
January 2025
Multifunctional Materials Laboratory, Department of Physics, Indian Institute of Technology Madras, Chennai, 600036, India.
The utilization of single crystals is exponentially growing in optoelectronic devices due to their exceptional benefits, including high phase purity and the absence of grain boundaries. However, achieving single crystals with a porous structure poses significant challenges. In this study, we present a method for fabricating porous single crystals (porous-SC) of CsAgBiBr and related halide double perovskites using an infrared-assisted spin coating technique.
View Article and Find Full Text PDFSci Bull (Beijing)
December 2024
Department of Chemistry, Laboratory of Advance Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai 200433, China. Electronic address:
Hierarchical organization is prevalent in nature, yet the artificial construction of hierarchical materials featuring asymmetric structures remains a big challenge. Herein, we report a stress-induced self-assembly strategy for the synthesis of hierarchically twisted stripe arrays (HTSAs) with mesoporous structures. A soft and thin mesostructured film assembled by micelles and TiO oligomers is the prerequisite.
View Article and Find Full Text PDFNat Mater
January 2025
School of Physics and Astronomy, Beijing Normal University, Beijing, China.
The coherent spin waves, magnons, can propagate without accompanying charge transports and Joule heat dissipation. Room-temperature and long-distance spin waves propagating within nanoscale spin channels are considered promising for integrated magnonic applications, but experimentally challenging. Here we report that long-distance propagation of chiral magnonic edge states can be achieved at room temperature in manganite thin films with long, antiferromagnetically coupled spin spirals (millimetre length) and low magnetic Gilbert damping (~3.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Graphic Arts and Photophysics, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, 532 10, Czech Republic.
Radio frequency magnetron co-sputtering method employing GeTe and Sc targets was exploited for the deposition of Sc doped GeTe thin films. Different characterization techniques (scanning electron microscopy with energy-dispersive X-ray analysis, X-ray diffraction, atomic force microscopy, sheet resistance temperature-dependent measurements, variable angle spectroscopic ellipsometry, and laser ablation time-of-flight mass spectrometry) were used to evaluate the properties of as-deposited (amorphous) and annealed (crystalline) Ge-Te-Sc thin films. Prepared amorphous thin films have GeTe, GeTeSc, GeTeSc, GeTeSc and GeTeSc chemical composition.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Department of Materials Physics, Nagoya University, Nagoya, Aichi 464-8603, Japan.
The spin pumping effect in antiferromagnets, which ultimately converts THz waves into a spin current, is the key physical mechanism leading to an essential function which harnesses the THz technology and spintronics. Here, we report thorough experimental investigations of the spin current induced by the antiferromagnetic spin pumping effect in epitaxial α-Fe_{2}O_{3} thin films having two distinct dynamic modes and unambiguously show that both the inter- and intrasublattice spin mixing conductance are equally substantial. Our experimental insight is an important advance for understanding the physics of transduction between the spin current and the staggered magnetization dynamics at THz frequency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!