Chemodynamic therapy (CDT), an innovative approach for treating bacterial infections, has garnered significant attention due to its ability to generate hydroxyl radicals (•OH) via Fenton/Fenton-like reactions. However, the effectiveness of CDT is considerably hindered by the limited availability of endogenous hydrogen peroxide (HO) and the overexpression of glutathione (GSH) within the infection microenvironment. To address these limitations, a multifunctional nanoplatform with self-supplying HO, GSH-depletion properties, and photothermal properties was developed through a straightforward and mild strategy. This platform employs calcium peroxide (CaO) as the core, coated with silica (SiO) to enhance stability and further modified with a Cu(II)-doped polydopamine (PDA) layer, forming a core-shell structured CaO@SiO@PDA-Cu (CSPC). The Cu(II) released by CSPC, combined with the HO produced from CaO degradation, participates in a Fenton-like reaction to generate toxic •OH radicals. Additionally, Cu(II)-mediated redox reactions deplete overexpressed GSH, thereby enhancing CDT efficacy. Upon coordination with Cu(II), the photothermal properties of PDA are significantly enhanced, achieving a photothermal conversion efficiency of up to 43%. The hyperthermia induced by photothermal therapy (PTT) further increases •OH production, augmenting CDT. The CSPC nanomaterials demonstrated outstanding synergistic photothermal bactericidal activity against () and () at 60 μg/mL, achieving complete eradication. Moreover, CSPC eliminated 65.90 ± 3.46% of the biofilm under near-infrared (NIR) irradiation. experiments demonstrated that CSPC treatment effectively eradicated bacteria, with a bacterial survival rate of 6.56 ± 3.28%, and accelerated wound healing, reducing the relative wound size to 7.0 ± 2.6%. Therefore, this study successfully developed versatile nanomaterials that significantly enhance the PTT/CDT dual-mode antibacterial performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c17388 | DOI Listing |
Anal Chem
January 2025
State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China.
The development of intelligent nanotheranostic technology that integrates diagnostic and therapeutic functions holds great promise for personalized nanomedicine. However, most of the nanotheranostic agents exhibit "always-on" properties and do not involve an amplification step, which may largely limit imaging contrast and restrict therapeutic efficacy. Herein, we construct a novel nanotheranostic platform (Hemin/DHPs/PDA@CuS nanocomposite) by assembling DNA hairpin probes (DHPs) and hemin on the surface of PDA@CuS nanosheets that enables amplified fluorescence imaging and activatable chemodynamic therapy (CDT) of tumors.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Laboratory Medicine, School of Chemical Science and Engineering, Shanghai Tenth People's Hospital of Tongji University, Tongji University, Shanghai, 200092, P. R. China.
The healing of bacterial biofilm-infected wounds is a complex process, and the construction of emerging therapeutic modalities that regulate the microenvironment to magnify therapeutic effects and reduce biotoxicity is still highly challenging. Herein, an engineered microneedle (MN) patch is reported to mediate the efficient delivery of black phosphorus nanosheets (BP NSs) and copper peroxide nanodots (CP NDs) for dual nanodynamic sterilization and methicillin-resistant staphylococcus aureus (MRSA)-infected wound healing. Results demonstrate that the system can eliminate biofilm, reduce cytotoxicity, promote angiogenesis and tissue regeneration by the multiple advantages of chemodynamic therapy (CDT), enhanced photodynamic therapy (PDT), and improved degradation process from BP NSs to phosphate for promoting cell proliferation.
View Article and Find Full Text PDFSmall
January 2025
Department of Thyroid Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710000, China.
Chemodynamic therapy (CDT) has garnered significant attention in the field of tumor therapy due to its ability to convert overexpressed hydrogen peroxide (HO) in tumors into highly toxic hydroxyl radicals (•OH) through metal ion-mediated catalysis. However, the effectiveness of CDT is hindered by low catalyst efficiency, insufficient intra-tumor HO level, and excessive glutathione (GSH). In this study, a pH/GSH dual responsive bimetallic nanocatalytic system (CuFeMOF@GOx@Mem) is developed by modifying red blood cell membranes onto glucose oxidase (GOx)-loaded Fe-Cu bimetallic MOFs, enhancing the efficacy of CDT through a triple-enhanced way by HO self-supply, catalysts self-cycling, and GSH self-elimination.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Department of Chemistry, Northeast Normal University, Changchun 130024, PR China. Electronic address:
The oral administration of drugs for cancer therapy can maintain optimal blood concentrations, is biologically safe and simple, and is preferred by many patients. However, the complex lumen environment, mucus layer, and intestinal epithelial cells are biological barriers that hinder the absorption of orally administered drugs. In this study, sea urchin-like manganese-doped copper selenide nanoparticles (Mn-CuSe NPs) were designed using an anion exchange method and coated with calcium alginate and chitosan (AC) to form Mn-CuSe@AC capsules.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan.
Hypoxia, a phenomenon that occurs when the oxygen level in tissues is lower than average, is commonly observed in human solid tumors. For oncological treatment, the hypoxic environment often results in radioresistance and chemoresistance. In this study, a new multifunctional oxygen carrier, carboxymethyl hexanoyl chitosan (CHC) nanodroplets decorated with perfluorohexane (PFH) and superparamagnetic iron oxide (SPIO) nanodroplets (SPIO@PFH-CHC), was developed and investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!