Single-oxidant slurries are prevalently utilized in chemical and mechanical polishing (CMP) of 4H-SiC crystal. Nevertheless, it is a challenge to achieve a high material removal rate (MRR) and surface quality using single oxidant slurries to meet the needs of global planarization and damage-free nanoscale surface processing of SiC wafers. To solve this challenge, a novel method is proposed for SiC CMP processing using the double oxidant slurry. This slurry mainly consists of alumina (AlO) abrasive particles, potassium permanganate (KMnO), potassium persulfate (KSO), and deionized water. Post CMP, MRR is 1045 nm/h calculated by scratch method, and surface roughness Sa is 0.33 nm measured by 3D optical surface morphometer, with the measurement area of 868 μm × 868 μm. Both the MRR and Sa are far better than those under the single oxidant slurry condition. CMP mechanism with double-oxidant slurry conditions is elucidated by energy dispersive spectrometer and X-ray photoelectron spectrometer. Initially, the Si-C bond on the SiC wafer surface was oxidized by KMnO, then MnO as the reduction product of KMnO can also catalyze the SO to further oxidize SiC wafer surface, and eventually the oxidation layers were removed by mechanical action of nano-AlO abrasive particles during CMP processing. These findings offer a pioneering approach and novel perspectives to achieve a higher MRR of 4H-SiC CMP, with potential implications for the application in high-performance SiC devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.4c04158 | DOI Listing |
ACS Nano
January 2025
Department of Mechanical Engineering, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, Texas 75080, United States.
The formation of non-ion conducting byproducts on zinc anode is notoriously detrimental to aqueous zinc-ion batteries (AZIBs). Herein, we successfully transform a representative detrimental byproduct, crystalline zinc hydroxide sulfate (ZHS) to fast-ion conducting solid-electrolyte interphase (SEI) via amorphization and fluorination induced by suspending CaF nanoparticles in dilute sulfate electrolytes. Distinct from widely reported nonhomogeneous organic-inorganic hybrid SEIs that exhibit structural and chemical instability, the designed single-phase SEI is homogeneous, mechanically robust, and chemically stable.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
Optical metasurfaces, arrays of nanostructures engineered to manipulate light, have emerged as a transformative technology in both research and industry due to their compact design and exceptional light control capabilities. Their strong light-matter interactions enable precise wavefront modulation, polarization control, and significant near-field enhancements. These unique properties have recently driven their application in biomedical fields.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR, 999078, China.
Potassium-sulfur (K-S) batteries are severely limited by the sluggish reaction kinetics of the cyclooctasulfur (cyclo-S) electrode with low conductivity, which urgently requires a novel cathode to facilitate activity to improve sulfur utilization. In this study, using the wet chemistry method, the molecular clip of Li is created to replace cyclo-S molecular with the highly active chain-like S molecular. The molecular clip strategy effectively lowers the reaction barrier in potassium-sulfur systems, and the stretching of S─S bonds weakens the binding between sulfur atoms, facilitating the transformation of potassium polysulfides (KPSs).
View Article and Find Full Text PDFJ Nat Prod
January 2025
Pharmacognosy Institute and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States.
To date, quantitative analysis of proanthocyanidin (PAC) containing materials including plant extracts and fractions depends on colorimetric assays or phloroglucinolysis/thiolysis combined with UV-HPLC analysis. Such assays are of limited accuracy, particularly lack specificity, require extensive sample preparation and degradation, and need appropriate physical reference standards. To address this analytical challenge and toward our broader goal of developing new plant-sourced biomaterials that chemically and mechanically modulate the properties of dental tissue for clinical interventions, we have characterized 12 different PAC DESIGNER (Depletion and Enrichment of Select Ingredients Generating Normalized Extract Resources) materials.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
TU Dortmund University, Faculty for Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund, GERMANY.
Precise control over the catenation process in interlocked supramolecular systems remains a significant challenge. Here, we report a system in which a lantern-shaped Pd2L4 cage can dimerize to form two distinct Pd4L8 catenanes with different interlocking degree: a previously described quadruply interlocked double cage motif of D4 symmetry and an unprecedented triply interlocked structure of C2h symmetry. While the former structure features a linear arrangement of four Pd(II) centers, separated by three mechanically linked pockets, the new motif has a staggered shape.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!