As a result of the swift surge in the adoption of electric vehicles, the quantity of spent lithium-ion power batteries has been growing at an exponential rate. Improper handling of these batteries can lead to the waste of strategic metal resources and pose risks to the environment and human health. Without doubt, it is essential to scientifically recover and reuse these spent power batteries, particularly by recovering positive electrode materials. Currently, there are several methods for recovering positive electrode materials, including pyrometallurgy, hydrometallurgy, bioleaching, and deep eutectic solvents (DESs) leaching. This review concetrated on the emerging technology of DESs leaching for positive electrode materials in spent lithium-ion battery. It provided an overview of the latest advancements in DESs leaching, considering factors such as acidity, reducibility, and coordination of DESs. The current technical status was analyzed and discussed, while also addressing the challenges and prospects for the development of DESs recovery in spent Li-ion power batteries. This work aims to offer practical guidance and serve as a foundation for additional studies and widespread implementation of DESs leaching for positive electrode materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/open.202400258 | DOI Listing |
Small
January 2025
School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
Inducing magnetic ordering in a non-ferrous layered double hydroxides (LDHs) instigates higher spin polarization, which leads to enhanced efficiency during oxygen evolution reaction (OER). In nano-sized magnetic materials, the concept of elongated grains drives domain alignment under the application of an external magnetic field. Hence, near the solid electrode interface, modified magnetohydrodynamics (MHD) positively impacts the electrocatalytic ability of non-ferrous nanocatalysts.
View Article and Find Full Text PDFHeliyon
January 2025
Sharif Institute of Energy, Water and Environment, Sharif University of Technology, Azadi Avenue, P.O.Box11365-9465, Tehran, Iran.
Manganese dioxide (MnO) is a well-known pseudocapacitive material that has been extensively studied and highly regarded, especially in supercapacitors, due to its remarkable surface redox behavior, leading to a high specific capacitance. However, its full potential is impeded by inherent characteristics such as its low electrical conductivity, dense morphology, and hindered ionic diffusion, resulting in limited rate capability in supercapacitors. Addressing this issue often requires complicated strategies and procedures, such as designing sophisticated composite architectures.
View Article and Find Full Text PDFChem Asian J
January 2025
Kyoto University - Uji Campus: Kyoto Daigaku - Uji Campus, Institute for Chemical Research, Gokasho, 611-0011, Uji, JAPAN.
The development of efficient electron-collecting monolayer materials is desired to lower manufacturing costs and improve the performance of regular (negative-intrinsic-positive, n-i-p) type perovskite solar cells (PSCs). Here, we designed and synthesized four electron-collecting monolayer materials based on thiazolidinone skeletons, with different lowest-unoccupied molecular orbital (LUMO) levels (rhodanine or thiazolidinedione) and different anchoring groups to the transparent electrode (phosphonic acid or carboxylic acid). These molecules, when adsorbed on indium tin oxide (ITO) substrates, lower the work function of ITO, decreasing the energy barrier for electron extraction at the ITO/perovskite interface and improving the device performance.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Chemistry, Shahid Beheshti University, G. C., 1983963113, Evin, Tehran, Iran.
Metal tellurides, known for their superior electrical conductivity and excellent electrochemical properties, are promising candidates for supercapacitor applications. This study introduces a novel method involving a metal-organic framework hybrid to synthesize CoTe@CoFeTe double-shelled nanocubes. Initially, zeolitic imidazolate framework-67 (ZIF67) and CoFe Prussian blue analog (PBA) nanocubes are synthesized through an anion-exchange reaction with [Fe(CN)] ions.
View Article and Find Full Text PDFRSC Adv
January 2025
Institute for Tropical Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Hanoi Vietnam
In this study, we report the successful fabrication of a novel antibacterial triboelectric nanogenerator (TENG) using a polymer composite film based on polyhexamethylene guanidine hydrochloride (PHMG). The composite materials, with optimised ingredient ratios, consist of PHMG, polyvinyl alcohol (PVA) and glutaraldehyde (GA) as a crosslinking agent (PHMG-GA-PVA). Utilising 3D printing, these composite materials were directly deposited on the conductive substrates and used as positive TENG electrodes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!