Biomaterial-associated fibrosis remains a significant challenge in medical implants. To optimize implant design, understanding the interplay between biomaterials and host cells during the foreign body response (FBR) is crucial. Material properties are known to influence cellular behavior and can be used to manipulate cell responses, but predicting the right combination for the desired outcomes is challenging. This study explores how combined physicochemical material properties impact early myofibroblast differentiation using the Biomaterial Advanced Cell Screening (BiomACS) technology, which assesses hundreds of combinations of surface topography, stiffness, and wettability in a single experiment. Normal human dermal fibroblasts (NHDFs) are screened for cell density, area, and myofibroblast markers α-smooth muscle actin (α-SMA) and Collagen type I (COL1) after 24 h and 7 days of culture, with or without transforming growth factor-beta (TGF-β). Results demonstrated that material properties influence fibroblast behavior after 7 days with TGF-β stimulation, with wettability emerging as the predominant factor, followed by stiffness. The study identified regions with increased cell adhesion while minimizing myofibroblast differentiation, offering the potential for implant surface optimization to prevent fibrosis. This research provides a powerful tool for cell-material studies and represents a critical step toward enhancing implant properties and reducing complications, ultimately improving patient outcomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/advs.202407531 | DOI Listing |
Int J Biol Macromol
January 2025
School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, PR China. Electronic address:
Wound bacterial infections not only impede the healing process but can also give rise to a range of serious complications, thereby posing a substantial risk to human health. Developing effective wound dressings incorporating phototherapy functionalities, specifically photothermal therapy (PTT) and photodynamic therapy (PDT), remains a critical area of research in modern wound care. Existing PTT-PDT systems often suffer from challenges such as nanoparticle aggregation and inefficient reactive oxygen species (ROS) generation, which are essential for therapeutic efficacy.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren'ai Road, Industrial Park, Suzhou 215123, PR China. Electronic address:
Exogenous genes are inserted into target cells during gene therapy in order to compensate or rectify disorders brought on by faulty or aberrant genes. However, gene therapy is still in its early stages because of its unsatisfactory therapeutic effects which are mainly due to low transfection efficiency of vectors, high toxicity, and poor target specificity. A natural polymer with numerous bioactive sites, good mechanical qualities, biodegradability, biocompatibility, and processability called silk fibroin has gained attention as a possible gene therapy vector.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Materials Engineering Group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan 87717-67498, Iran.
3D printing, as a layer-by-layer manufacturing technique, enables the customization of tissue engineering scaffolds. Surface modification of biomaterials is a beneficial approach to enhance the interaction with living cells and tissues. In this research, a polylactic acid/polyethylene glycol scaffold containing 30 % bredigite nanoparticles (PLA/PEG/B) was fabricated utilizing fused deposition modeling (FDM) 3D printing.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China. Electronic address:
This study focuses on the development and application of tea polyphenol-loaded chitosan/polyaspartic acid nanoparticles (TP@CS/PASP-Nps) embedded within polyvinyl alcohol (PVA) nanofibers to extend the shelf life of fruit. The nanofibers were fabricated using electrospinning, which enhanced the stability and uniform dispersion of the nanoparticles. Experimental results demonstrated that the TP@CS/PASP nanoparticles exhibit significant pH and protease-responsive release of TP, with a cumulative release of 56.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain.
The current study addresses the pressing issue of unsustainable water management, particularly in regions experiencing high water stress. It focuses on examining the viability of polymeric membranes composed of biobased materials, mainly chitosan, for various sustainable water management solutions. The membranes evaluated in the study were blends of PVC with either chitosan-silica or charcoal-silica, designed to enhance their functionality and performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!