Developing implantable medical materials with excellent comprehensive performance has important practical applications. Cardiovascular and bile ducts are characterized by various forms of diseases and high morbidity and mortality. One of the effective treatment modalities for such diseases is replacement surgery. Since commercially available materials for tubular organ sites are in short supply and the number of autologous and natural grafts is limited, the study of implantable materials that can be prepared in tubes is of great significance. This study reports on an implantable medical polyurethane material (IBP-PU) with a binary soft segment structure prepared by microwave synthesis. The material exhibits excellent mechanical properties (with a mechanical strength of 33.00 ± 4.02 MPa and a strain at break of 519.93 ± 53.44%), and stable thermomechanical properties ( > 250 °C). The excellent biocompatibility of IBP-PU (hemolysis rate = 2.55% and cell survival on the fifth day over 100%, etc.) makes it suitable for implantable medical applications. Its appropriate degradation rate allows for slow in vivo degradation with the generation of tissues, and the degradation products are nontoxic and do not require removal by secondary surgery. Additionally, the material has been successfully prepared using electrostatic spinning technology, resulting in a 5 mm caliber. It is significant for small-caliber cardiovascular, bile duct, and other in vivo tubular grafts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsabm.4c01526 | DOI Listing |
J Am Coll Cardiol
December 2024
Division of Cardiology, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
Background: There are no contemporary reports that highlight the national outcomes for children with congenital heart disease (CHD) undergoing ventricular assist device (VAD) implantation.
Objectives: This study sought to evaluate differences in VAD outcomes for children with CHD to those with non-CHD as well as those with univentricular CHD to those with biventricular CHD.
Methods: Data for CHD and non-CHD patients from the multicenter ACTION (Advanced Cardiac Therapies Improving Outcomes Network) undergoing VAD implantation from April 2018 to February 2023 were included.
J Am Coll Cardiol
December 2024
Icahn School of Medicine at Mount Sinai, New York, New York, USA.
Background: The growing use of leadless pacemaker (LP) technology requires safe and effective solutions for retrieving and removing these devices over the long term.
Objectives: This study sought to evaluate retrieval and removal of an active helix-fixation LP studied in worldwide regulatory clinical trials.
Methods: Subjects enrolled in the LEADLESS II phase 1 investigational device exemption, LEADLESS Observational, or LEADLESS Japan trials with an attempted LP retrieval at least 6 weeks postimplantation were included.
Viruses
December 2024
Gilead Sciences, Inc., Foster City, CA 94404, USA.
Ebola virus (EBOV) causes severe disease in humans, with mortality as high as 90%. The small-molecule antiviral drug remdesivir (RDV) has demonstrated a survival benefit in EBOV-exposed rhesus macaques. Here, we characterize the efficacy of multiple intravenous RDV dosing regimens on survival of rhesus macaques 42 days after intramuscular EBOV exposure.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Urology and Department of Nuclear Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China.
Background/objectives: The purpose of this study was to develop the gemcitabine-loaded drug-eluting beads (G-DEBs) for transarterial chemoembolization (TACE) in rabbit renal tumors and to evaluate their antitumor effect using 2-deoxy-2-[(18)F]fluoro-D-glucose positron emission tomography/X-ray computed tomography (F-FDG PET/CT).
Methods: DEBs were prepared by polyvinyl alcohol-based macromer crosslinked with -acryl tyrosine and ,'-methylenebis(acrylamide). Gemcitabine was loaded through ion change to obtain G-DEBs.
Polymers (Basel)
December 2024
College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430070, China.
Artificial blood vessels made from polyurethane (PU) have been researched for many years but are not yet in clinical use. The main reason was that the PU materials are prone to degradation after contact with blood and will also cause inflammation after long-term implantation. At present, PU has made progress in biostability and biocompatibility, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!