A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

From SMILES to Enhanced Molecular Property Prediction: A Unified Multimodal Framework with Predicted 3D Conformers and Contrastive Learning Techniques. | LitMetric

We present a novel molecular property prediction framework that requires only the SMILES format as input but is designed to be multimodal by incorporating predicted 3D conformer representations. Our model captures comprehensive molecular features by leveraging both the sequential character structure of SMILES and the three-dimensional spatial structure of conformers. The framework employs contrastive learning techniques, utilizing InfoNCE loss to align SMILES and conformer embeddings, along with task-specific loss functions, such as ConR for regression and SupCon for classification. To address data imbalance, we incorporate feature distribution smoothing (FDS), a common challenge in drug discovery. We evaluated the framework through multiple case studies, including SARS-CoV-2 drug docking score prediction, molecular property prediction using MoleculeNet data sets, and kinase inhibitor prediction for JAK-1, JAK-2, and MAPK-14 using custom data sets curated from PubChem. The results consistently outperformed state-of-the-art methods, with ConR and FDS significantly improving regression tasks and SupCon enhancing classification performance. These findings highlight the flexibility and robustness of our multimodal model, demonstrating its effectiveness across diverse molecular property prediction tasks, with promising applications in drug discovery and molecular analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jcim.4c01240DOI Listing

Publication Analysis

Top Keywords

molecular property
16
property prediction
16
contrastive learning
8
learning techniques
8
drug discovery
8
data sets
8
molecular
6
prediction
6
smiles
4
smiles enhanced
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!