Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A century after Otto Warburg's seminal discovery of aerobic glycolysis in cancer cells, a phenomenon dubbed the "Warburg effect", the mechanistic links between this metabolic rewiring and tumorigenesis remain elusive. Warburg postulated that this enhanced glucose fermentation to lactate, even in the presence of oxygen, stemmed from an "irreversible respiratory injury" intrinsic to cancer cells. While oxidative phosphorylation yields higher ATP, the Warburg effect paradoxically persists, suggesting that the excess lactate and acid production are worth the deficit. Since Warburg's discovery, it has been demonstrated that the acidic tumor microenvironment activates a myriad of pro-oncogenic phenotypes ranging from therapeutic resistance to immune escape. Here we propose that proton-sensing G-protein-coupled receptors (GPCRs) act as crucial heirs to Warburg's findings by transducing the acid signal from elevated glycolytic lactate into pro-oncogenic signals. The increased lactate production characteristic of the Warburg effect causes extracellular acidification. This acidic tumor microenvironment can activate proton-sensing GPCRs like GPR68, a proton-sensing receptor shown to stimulate proliferation, migration, and survival pathways in cancer cells. Such pH sensing is accomplished through protonation of key residues such as histidine, which causes a conformational change to activate various downstream signaling cascades including the MAPK, PI3K/Akt, Rho, and β-arrestin pathways implicated in tumor progression and therapeutic resistance. By coupling Warburg's "respiratory injury" to potent mitogenic signaling, proton-sensing GPCRs like GPR68 may unveil a longstanding mystery - why forgo efficient ATP generation? As heirs to Warburg's iconic metabolic observations, these proton sensors could represent novel therapeutic targets to disrupt the synergy between the Warburg effect and oncogenic signaling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11619763 | PMC |
http://dx.doi.org/10.46439/cancerbiology.5.066 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!