A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Amyotrophic lateral sclerosis diagnosis using machine learning and multi-omic data integration. | LitMetric

Amyotrophic lateral sclerosis diagnosis using machine learning and multi-omic data integration.

Heliyon

School of Information and Communication Technology, Griffith University, 170 Kessels Rd, Nathan, Brisbane, 4111, QLD, Australia.

Published: October 2024

Amyotrophic Lateral Sclerosis (ALS) is a complex and rare neurodegenerative disorder characterized by significant genetic, molecular, and clinical heterogeneity. Despite numerous endeavors to discover the genetic factors underlying ALS, a significant number of these factors remain unknown. This knowledge gap highlights the necessity for personalized medicine approaches that can provide more comprehensive information for the purposes of diagnosis, prognosis, and treatment of ALS. This work utilizes an innovative approach by employing a machine learning-facilitated, multi-omic model to develop a more comprehensive knowledge of ALS. Through unsupervised clustering on gene expression profiles, 9,847 genes associated with ALS pathways are isolated and integrated with 7,699 genes containing rare, presumed pathogenic genomic variants, leading to a comprehensive amalgamation of 17,546 genes. Subsequently, a Variational Autoencoder is applied to distil complex biomedical information from these genes, culminating in the creation of the proposed Multi-Omics for ALS (MOALS) model, which has been designed to expose intricate genotype-phenotype interconnections within the dataset. Our meticulous investigation elucidates several pivotal ALS signaling pathways and demonstrates that MOALS is a superior model, outclassing other machine learning models based on single omic approaches such as SNV and RNA expression, enhancing accuracy by 1.7 percent and 6.2 percent, respectively. The findings of this study suggest that analyzing the relationships within biological systems can provide heuristic insights into the biological mechanisms that help to make highly accurate ALS diagnosis tools and achieve more interpretable results.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11619964PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e38583DOI Listing

Publication Analysis

Top Keywords

amyotrophic lateral
8
lateral sclerosis
8
machine learning
8
als
8
sclerosis diagnosis
4
diagnosis machine
4
learning multi-omic
4
multi-omic data
4
data integration
4
integration amyotrophic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!