Fast synthesis of DNA origami single crystals at room temperature.

Chem Sci

College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China

Published: January 2025

AI Article Synopsis

  • Structural DNA nanotechnology enables the design and assembly of DNA microstructures, but typically requires slow heat treatment to avoid disorganized aggregates.
  • The study introduces urea as a catalyst for rapid crystallization, allowing DNA origami to form cubic single crystals at room temperature in as little as 4 hours, growing into larger microcrystals over 2 days.
  • A unique phase diagram approach enables users to customize the melting temperature for crystallization, facilitating the growth of high-quality DNA crystals even in variable outdoor temperatures, which could lead to advances in adaptive self-assemblies and practical applications in functional DNA microstructures.

Article Abstract

Structural DNA nanotechnology makes the programmable design and assembly of DNA building blocks into user-defined microstructures feasible. However, the formation and further growth of these microstructures requires slow heat treatment in precise instruments, as otherwise amorphous aggregates result. Here, we used an organic solute, urea, as the catalyst for the crystallization of DNA origami building blocks to achieve the fast synthesis of DNA origami single crystals with a cubic Wulff shape at room temperature. The ordered assemblies can be formed within 4 hours at room temperature, which further grew into cubic microcrystals with an average size of about 5 micrometers within 2 days. Furthermore, the phase diagram provides an inverse logic that allows users to proactively customize the melting temperature ( ) of crystallization according to the target temperature conditions, rather than requiring design of DNA sequences or painstakingly difficult trial-and-error attempts. On this basis, even under random fluctuating outdoor temperature conditions, DNA origami crystals can still grow and maintain high quality and high yield comparable to those of crystals synthesized in precise instruments, creating a basis for the development of adaptive self-assemblies and the industrialization of functional DNA microstructures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11615621PMC
http://dx.doi.org/10.1039/d4sc07267gDOI Listing

Publication Analysis

Top Keywords

dna origami
16
room temperature
12
fast synthesis
8
dna
8
synthesis dna
8
origami single
8
single crystals
8
building blocks
8
precise instruments
8
temperature conditions
8

Similar Publications

Controlling the light emitted by individual molecules is instrumental to a number of advanced nanotechnologies ranging from super-resolution bioimaging and molecular sensing to quantum nanophotonics. Molecular emission can be tailored by modifying the local photonic environment, for example, by precisely placing a single molecule inside a plasmonic nanocavity with the help of DNA origami. Here, using this scalable approach, we show that commercial fluorophores may experience giant Purcell factors and Lamb shifts, reaching values on par with those recently reported in scanning tip experiments.

View Article and Find Full Text PDF

The diversity and heterogeneity of biomarkers has made the development of general methods for single-step quantification of analytes difficult. For individual biomarkers, electrochemical methods that detect a conformational change in an affinity binder upon analyte binding have shown promise. However, because the conformational change must operate within a nanometer-scale working distance, an entirely new sensor, with a unique conformational change, must be developed for each analyte.

View Article and Find Full Text PDF

DNA double crossover (DX) motifs including DAE (double crossover, antiparallel, even spacing) and DAO (double crossover, antiparallel, odd spacing) are well-known monolayered DNA building blocks for construction of 2D DNA arrays and tubes in nanoscale and microscale. Compared to the 3D architectures of DNA origami and single-stranded DNA bricks to build nanoscale 3D bundles, tessellations, gears, castles, etc., designs of double- and multi-layers of DX motifs for 3D architectures are still limited.

View Article and Find Full Text PDF

Self-assembled DNA origami lattices on silicon oxide surfaces have great potential to serve as masks in molecular lithography. However, silicon oxide surfaces come in many different forms and the type and history of the silicon oxide has a large effect on its physicochemical surface properties. Therefore, we here investigate DNA origami lattice formation on differently fabricated SiOx films on silicon wafers after wet-chemical oxidation by RCA1.

View Article and Find Full Text PDF

A DNA origami-based enzymatic cascade nanoreactor for chemodynamic cancer therapy and activation of antitumor immunity.

Sci Adv

January 2025

CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.

Chemodynamic therapy (CDT) is a promising and potent therapeutic strategy for the treatment of cancer. We developed a DNA origami-based enzymatic cascade nanoreactor (DOECN) containing spatially well-organized Au nanoparticles and ferric oxide (FeO) nanoclusters for targeted delivery and inhibition of tumor cell growth. The DOECN can synergistically promote the generation of hydrogen peroxide (HO), consumption of glutathione, and creation of an acidic environment, thereby amplifying the Fenton-type reaction and producing abundant reactive oxygen species, such as hydroxyl radicals (•OH), for augmenting the CDT outcome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!