Circulating tumor nucleic acids (CTNAs), which consist of cell-free DNA or RNA released from tumor cells, are utilized as potential biomarkers for diagnosing and managing tumor prognosis. There is a significant demand for developing a highly sensitive and reliable assay for CTNAs detection. In this study, we engineered a CRISPR/Cas12a corona nanomachine capable of detecting circulating tumor DNA and RNA in serum. This nanomachine consists of a protein shell incorporating Cas12a/crRNA ribonucleoprotein complexes and a scaffold AuNP core decorated with substrate ssDNA strands. The protective CRISPR corona shields the nucleic acid core from degradation by nuclease DNase/RNase, thereby enhancing the stability of the CRISPR/Cas12a corona nanomachine in biological fluids, even tolerating up to undiluted human serum and FBS. Upon encountering target CTNAs, the CRISPR/Cas12a is activated through the sequence-specific hybridization between crRNA and CTNAs. Subsequently, the activated CRISPR/Cas12a autonomously cleaves the collateral ssDNA substrates on AuNPs, releasing the fluorophore-labeled fragment and generating an increasing fluorescent signal. The CRISPR corona nanomachine was successfully employed to detect various CTNAs, including circulating tumor (ct)DNA/RNA ( L858R) and microRNA-21, achieving a limit of detection of 0.14 pM for ctDNA and 1.0 pM for RNA. This CRISPR corona nanomachine enables simultaneous detection of both DNA and RNA in complex biological samples, offering a promising tool for early diagnosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.4c04993 | DOI Listing |
Anal Chem
December 2024
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
ACS Nano
March 2016
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China.
In chemotherapy, it is a great challenge to recruit endogenous stimuli instead of external intervention for targeted delivery and controlled release; microRNAs are the most promising candidates due to their vital role during tumorigenesis and significant expression difference. Herein, to amplify the low abundant microRNAs in live cells, we designed a stimuli-responsive DNA Y-motif for codelivery of siRNA and Dox, in which the cargo release was achieved via enzyme-free cascade amplification with endogenous microRNA as trigger and ATP (or H(+)) as fuel through toehold-mediated strand displacement. Furthermore, to realize controlled release in tumor cells, smart nanocarriers were constructed with stimuli-responsive Y-motifs, gold nanorods, and temperature-sensitive polymers, whose surfaces could be reversibly switched between PEG and RGD states via photothermal conversion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!