Solving the puzzle of copper trafficking in Trypanosoma cruzi: candidate genes that can balance uptake and toxicity.

FEBS J

Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de Rosario (UNR), Rosario, Argentina.

Published: December 2024

AI Article Synopsis

  • Trypanosoma cruzi, the parasite causing Chagas disease, relies on copper (Cu) for growth and development, but its levels must be carefully controlled due to potential toxicity.
  • The study found that Cu is crucial for the proliferation of the epimastigote stage and the transition to the metacyclic form, but the intracellular amastigote stage experiences copper stress during infection.
  • Researchers identified key gene products related to copper metabolism, such as TcCuATPase for copper export and suggested TcIT as a possible copper importer, highlighting a unique model of copper transport and distribution in T. cruzi.

Article Abstract

Trypanosoma cruzi, the causative agent of Chagas disease, depends on acquiring nutrients and cofactors, such as copper (Cu), from different hosts. Cu is essential for aerobic organisms, but it can also be toxic, and so its transport and storage must be regulated. In the present study, we characterized the effects of changes in Cu availability on growth behavior, intracellular ion content and oxygen consumption. Our results show that copper is essential for epimastigote proliferation and for the metacyclogenesis process. On the other hand, intracellular amastigotes suffered copper stress during infection. In addition, we identify gene products potentially involved in copper metabolism. Orthologs of the highly conserved P-type Cu ATPases involved in copper export and loading of secreted enzymes were identified and named T. cruzi Cu P-type ATPase (TcCuATPase). TcCuATPase transcription is upregulated during infective stages and following exposure to copper chelators in the epimastigote stage. Homolog sequences for the high affinity import protein CTR1 were not found. Instead, we propose that the T. cruzi iron transporter (TcIT), a ZIP family transporter, could be involved in copper uptake based on transcriptional response to copper availability. Further canonical copper targets (based on homology to yeast and mammals) such as the T. cruzi ferric reductase (TcFR) and the cupro-oxidase TcFet3 are upregulated during infective stages and under conditions of intracellular copper deficiency. In sum, copper metabolism is essential for the life cycle of T. cruzi. Even though cytosolic copper chaperons were not identified, we propose a previously undescribed model for copper transport and intracellular distribution in T. cruzi, including some conserved factors such as TcCuATPase, as well as others such as TcFR and TcIT, playing novel functions.

Download full-text PDF

Source
http://dx.doi.org/10.1111/febs.17340DOI Listing

Publication Analysis

Top Keywords

copper
14
involved copper
12
trypanosoma cruzi
8
copper metabolism
8
upregulated infective
8
infective stages
8
cruzi
7
solving puzzle
4
puzzle copper
4
copper trafficking
4

Similar Publications

Application of a near real-time technique for the assessment of atmospheric arsenic and metals emissions from a copper smelter in an urban area of SW Europe.

Environ Pollut

December 2024

Associate Unit CSIC-University of Huelva "Atmospheric Pollution", Center for Research in Sustainable Chemistry - CIQSO, University of Huelva, E21007 Huelva, Spain; Department of Earth Sciences, Faculty of Experimental Sciences, University of Huelva, Campus El Carmen s/n, E21007, Huelva, Spain.

Emissions of metals and metalloids as a result of industrial processes, entail a great risk to human health. A high time resolution study on arsenic levels in PM in the city of Huelva (SW Spain) was carried out between September 2021 and September 2022. Hourly data obtained with a near real-time technique based on X-ray fluorescence were inter-compared with other offline analytical instrumentation.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative disease that is significantly characterized by cognitive and memory impairments, which worsen significantly with age. In the late stages of AD, metal ion disorders and an imbalance of reactive oxygen species (ROS) levels occur in the brain microenvironment, which causes abnormal aggregation of β-amyloid (Aβ), leading to a significant worsening of the AD symptoms. Therefore, we designed a composite nanomaterial of macrophage membranes-encapsulated Prussian blue nanoparticles (PB NPs/MM).

View Article and Find Full Text PDF

From automated Raman to cost-effective nanoparticle-on-film (NPoF) SERS spectroscopy: A combined approach for assessing micro- and nanoplastics released into the oral cavity from chewing gum.

J Hazard Mater

December 2024

Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom; Material and Advanced Technologies for Healthcare, Queen's University of Belfast, 18-30 Malone Road, Belfast BT9 5DL, United Kingdom. Electronic address:

Microplastics (MPs) and Nanoplastics (NPs), a burgeoning health hazard, often go unnoticed due to suboptimal analytical tools, making their way inside our bodies through various means. Surface Enhanced Raman Spectroscopy (SERS), although is utilized in detecting NPs, challenges arise at low concentrations due to their low Raman cross section and inability to situate within hotspots owing to their ubiquitous size and shape. This study presents an innovative and cost-effective approach employing household metallic foils (aluminium and copper) as nanoparticle-on-film (NPoF) substrates for targeting such analytes.

View Article and Find Full Text PDF

A novel metal-organic framework (MOF), (Cu-S)MOF, with a copper-sulfur planar structure was applied to photocatalytic H production application. (Cu-S)MOF@ZnS nanocomposite was synthesized using a microwave-assisted hydrothermal approach. The formation of (Cu-S)MOF and wurtzite ZnS in the composite nanoparticles was analyzed by X-ray diffraction (XRD), field emission-scanning electron microscopy (FESEM), and high-resolution transmission electron microscope (HRTEM).

View Article and Find Full Text PDF

This study aimed to investigate the potential of condensed tannins isolated from Cercis chinensis Bunge leaves as natural preservatives for fruits and vegetables. The research demonstrated that C. chinensis leaves condensed tannins (CLCT) significantly delay the browning process and reduce nutritional loss in fresh-cut lotus roots.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!