Carbonic anhydrases (CAs) are ideal catalysts for carbon dioxide sequestration in efforts to alleviate climate change. Here, we report the characterisation of three α-CAs that originate from the thermophilic bacteria Persephonella hydrogeniphila (PhyCA), Persephonella atlantica (PaCA), and Persephonella sp. KM09-Lau-8 (PlauCA) isolated from hydrothermal vents. The three α-Cas, showing high sequence similarities, were produced in Escherichia coli, purified and characterised. Surprisingly, they revealed very different behaviours with regards to their thermostability profiles. PhyCA presented a more stable thermostability profile amongst the three, thus we chose it for rational engineering to improve it further. PhyCA's residue K88, a proton transfer residue in α-CAs, was mutated to His, Ala, Gln and Tyr. A 4-fold activity improvement was noted for variants K88H and K88Q at 30 °C, owing to the higher proton transfer efficiency of the replacement proton transfer residues. K88Q also proved more stable than PhyCA. K88Y did not increase activity, but notably increased thermal stability, with this enzyme variant retaining 50% of its initial activity after incubation for 1 h at 90 °C. Removal of the two main proton shuttles (variant H85A_K88A) resulted in diminished activity of the enzyme. Molecular dynamics simulations performed for PhyCA and all its variants revealed differences in residue fluctuations, with K88A resulting in a general reduction in root mean square fluctuation (RMSF) of active site residues as well as most of the CA's residues. Its specific activity and stability in turn increased compared to the wild type.

Download full-text PDF

Source
http://dx.doi.org/10.1111/febs.17346DOI Listing

Publication Analysis

Top Keywords

proton transfer
12
rational engineering
8
three α-cas
8
activity
5
engineering highly
4
highly active
4
active resilient
4
resilient α-carbonic
4
α-carbonic anhydrase
4
anhydrase hydrothermal
4

Similar Publications

Background: Alzheimer's disease (AD) is thought to result from a complex cascade of events involving several pathological processes. Recent studies have reported alterations in white matter (WM) microstructure in the early phase of AD, but WM remains understudied. We used a multivariate approach to capture the complexity and heterogeneity of WM pathologies and its links to cognition and AD risk factors in a more holistic manner.

View Article and Find Full Text PDF

It is required to have a more straightforward and easier way to check the quality of food to ensure the safety of the public heaths. The decomposition of meat protein results in ammonia and biogenic amines (BAs).  Here, we have designed and synthesized three luminescent-based probe molecules, which originated from 2-(2-hydroxyphenyl) benzothiazole (HBT) derivatives and showed the excited state-induced proton transfer (ESIPT) phenomenon.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is thought to result from a complex cascade of events involving several pathological processes. Recent studies have reported alterations in white matter (WM) microstructure in the early phase of AD, but WM remains understudied. We used a multivariate approach to capture the complexity and heterogeneity of WM pathologies and its links to cognition and AD risk factors in a more holistic manner.

View Article and Find Full Text PDF

The packing of organic molecular crystals is often dominated by weak non-covalent interactions, making their rearrangement under external stimuli challenging to understand. We investigate a pressure-induced single-crystal-to-single-crystal (SCSC) transformation between two polymorphs of 2,4,5-triiodo-1-imidazole using machine learning potentials. This process involves the rearrangement of halogen and hydrogen bonds combined with proton transfer within a complex solid-state system.

View Article and Find Full Text PDF

In processes such as electrodialysis, the applied electrical potential is constrained by concentration polarization at the membrane/solution interface. This polarization, which intensifies at higher current densities, impedes ion transport efficiency and may lead to problems such as salt precipitation, membrane degradation, and increased energy consumption. Therefore, understanding concentration polarization is essential for enhancing membrane performance, improving efficiency, and reducing operational costs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!