The thermodynamical deprotonation of methylammonium chloride (MACl) has several detrimental influences on the quality of formamidinium (FA+)-based perovskite, which limits both efficiency and stability of inverted perovskite solar cells (IPSCs). Herein, a new additive strategy was developed by introducing methyl carbamimidothioate hydroiodide (MCH) into perovskite precursor, where guanylation reaction occurred between MCH and MACl to form a new intermediate of methyl-substituted guanidine (MSG). MSG could then bond with undercoordinated Pb2+ to in-situ form a two-dimensional (2D) perovskite, which would promote the growth and crystallization of three-dimensional (3D) perovskite with higher crystallinity, lower defect-states density and superior stability. Finally, the MCH-treated IPSC with a small area (0.09 cm2) achieved an impressive power conversation efficiency (PCE) of 26.81% (certified as 26.02%), which is one of the highest PCEs reported to date. The large area MCH-treated device (1.00 cm2) also obtained a high PCE of 24.36%. Moreover, the unencapsulated and MCH-treated device exhibited excellent operational stability, maintaining 91.95% and 97.06% of their initial efficiencies after aging in air and a nitrogen-filled atmosphere at 85 oC for 1200 h. The encapsulated MCH-treated devices retained 94.25% of its initial efficiency after continuously tracking at the maximum power-point for 1200 h in air.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202419070 | DOI Listing |
Inorg Chem
December 2024
Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China.
Defect engineering in SrTiO crystals plays a pivotal role in achieving efficient overall solar water splitting, as evidenced by the influence of Al ions. However, the uneven structural relaxation caused by Al ions has been overlooked, significantly affecting the defect state and catalytic activity. When an AlO crucible is used, optimizing this defect engineering presents a significant challenge.
View Article and Find Full Text PDFSmall
December 2024
Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
Mechanistic understanding of how electrode-electrolyte interfaces evolve dynamically is crucial for advancing water-electrolysis technology, especially the restructuring of catalyst surface during complex electrocatalytic reactions. However, for perovskite fluorides, the mechanistic exploration for the influence of the dynamic restructuring on their chemical property and catalytic mechanism is unclear due to their poor conductivity that makes the definition of electrocatalyst structure difficult. Herein, for oxygen evolution reaction (OER), various operando characterizations are employed to investigate the structure-activity relationships of the KNiFe F@NF.
View Article and Find Full Text PDFSmall
December 2024
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China.
Currently, the power conversion efficiency (PCE) of inverted perovskite solar cells (PSCs) is still limited by reduced open-circuit voltage (V), due to defect-induced charge recombination. Most studies focus on defect passivation and improving carrier transport through introducing passivating molecules or macroscopic physical fields. Herein, to mitigate energy level mismatch and recombination losses induced by interface defects, an interface electric-field passivation is introduced, employing the ordered arrangement of the dipole molecule benzenesulfonyl chloride (BC).
View Article and Find Full Text PDFSmall
December 2024
Science and Education Integration College of Energy and Carbon Neutralization, College of Materials Science and Engineering, Zhejiang Provincial Key Laboratory of Clean Energy Conversion and Utilization, Zhejiang University of Technology, Hangzhou, 310014, China.
The utilization of small organic molecules with appropriate functional groups and geometric configurations for surface passivation is essential for achieving efficient and stable perovskite solar cells (PSCs). In this study, two isomers, 4-sulfonamidobenzoic acid (4-SA) and 3-sulfamobenzoic acid (3-SA), both featuring sulfanilamide and carboxyl functional groups arranged in different positions, are evaluated for their effectiveness in passivating defects of the perovskite layer. The calculation and characterization results reveal that 3-SA, with its meta-substitution, offered superior passivation compared to the para-substituted 4-SA, leading to enhanced charge carrier dynamics and extraction efficiency.
View Article and Find Full Text PDFSci Bull (Beijing)
December 2024
Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China. Electronic address:
Mixed Sn-Pb perovskites are attracting significant attention due to their narrow bandgap and consequent potential for all-perovskite tandem solar cells. However, the conventional hole transport materials can lead to band misalignment or induce degradation at the buried interface of perovskite. Here we designed a self-assembled material 4-(9H-carbozol-9-yl)phenylboronic acid (4PBA) for the surface modification of the substrate as the hole-selective contact.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!