A Decision Tree-Driven IoT systems for improved pre-natal diagnostic accuracy.

BMC Med Inform Decis Mak

School of Computer, Central China Normal University, Wuhan, 430079, China.

Published: December 2024

Prenatal diagnostics are vital for the woman as well as her unborn baby. The diagnostics help in the early identification of the possibility of complication and the initial measures that help to ameliorate the mother and the fetus health status are taken. Over the year's various techniques have been employed in diagnosing genetic disorders before birth that lack effectiveness in terms of cost, time, and places to access ultra-modern health facilities. To overcome these problems, this paper puts forward a diagnostic model that integrates Internet of Things innovation with a Machine Learning approach which is the Decision Tree Algorithms. First, it implies the application of IOT devices in the collection of vital information like heart rate, blood pressure, glucose levels, and fetal movement. The data is structured in the form of a dataset and transmitted to a Big Data storage for warehousing and processing. Secondly, the DTA is employed to analyze the data and look for patterns and possibilities of future health complications. The DTA operates in that it divides the dataset into subsets considering specific features and formulates a tree-like model of decisions. At every node, the algorithm chooses the attribute which has the highest information gain, to partition the data into different classes. This process goes on until it reaches a decision node through which, it can decide probable health problems from the input data. To increase the reliability of the developed model this study fine-tunes the model by using a large database of pre-natal health records. The system is capable of collecting data in real-time and flagging data that needs attention in the case of any abnormality to the health professional. The above methodology was tested on a 1000-record database of pre-natal health records where the proposal achieved 95% possibility of potential health problems as against 85% by classical statistical analysis. Furthermore, the system scaled down the number of false positive cases by 20 percent and false negatives by 15 percent thus the efficacy of the system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11622561PMC
http://dx.doi.org/10.1186/s12911-024-02759-xDOI Listing

Publication Analysis

Top Keywords

health
8
health problems
8
database pre-natal
8
pre-natal health
8
health records
8
data
7
decision tree-driven
4
tree-driven iot
4
iot systems
4
systems improved
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!