Osteoporosis has increasingly become a major public health concern because of its associated heightened risk of bone fragility and fractures. In order to avoid the adverse risk of hormone therapy, scientists have considered isoquercitrin (IQ) as a natural phytoestrogen to potentially prevent osteoporosis. However, IQ has poor solubility and bioavailability which culminates in rapid elimination of phytoestrogen. Herein, this study sought to solve limited applications of IQ by preparing IQ-loaded PEGylated long circulating liposomes (IQ-Lips) via thin-film hydration method. After appropriate characterization using zeta-potential, polydispersed index (PDI), particle size and entrapment efficiency (EE), IQ-Lips were applied to ovariectomized rat models to evaluate their effect on osteoporosis. The results showed that the prepared IQ-Lips exhibited smaller sized nanoparticles (125.35 ± 4.50 nm), excellent PDI (0.244 ± 0.001) and zeta-potential (-28.64 ± 0.71 mV) with stable property and higher EE (92.10 ± 0.32%). Importantly, administration of IQ-Lips through oral route increased aqueous solvability, bioavailability and circulation time of IQ. Moreover, the IQ-Lips could increase bone microstructural densities and bone mass, as well as reduce oxidative stress in ovariectomized rat models. Altogether, the IQ-Lips may serve as a novel avenue to potentially prolong the circulation of IQ in the body and improve the bioavailability of IQ for treatment of osteoporosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1208/s12249-024-02993-6 | DOI Listing |
Radiat Res
December 2024
Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.
BBT-059 is a long-acting PEGylated interleukin-11 analog that has been shown to have hematopoiesis-promoting and anti-apoptotic attributes, and is being studied as a radiation countermeasure for the hematopoietic acute radiation syndrome (H-ARS). This potential countermeasure has been demonstrated to enhance survival in irradiated mice. To investigate the toxicity and safety profile of this agent, 14 nonhuman primates (NHPs, rhesus macaques) were administered two different doses of BBT-059 subcutaneously 24 h after 4 Gy total-body irradiation and were monitored for the next 60 days postirradiation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, School of Chemistry, Northeast Normal University, Changchun 130024, China.
Liposomes have attracted attention in biomedicine and pharmacy for their benefits including reduced toxicity, extended pharmacokinetics, and biocompatibility. However, their limitations include susceptibility to blood clearance, rapid disintegration, and lack of functionality, restricting their further applications. To address these challenges, inspired by the unique topological features of cyclic polymers and the specific binding property of the choline phosphate (CP) lipid, dipole-dipole interactions between CP molecules are utilized to create a detachable cyclic PEG-embedded CP liposome (d-cycPEG-lipo).
View Article and Find Full Text PDFJ Control Release
December 2024
College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
In recent years, polypeptides have been standing out as excellent candidates to replace polyethylene glycol (PEG) with adequate biocompatibility and biodegradability. In this study, we found that (VELPPP), an anionic γ-zein-based proline-rich peptide with a polyproline-II helical structure, was able to impart liposomes with considerable stability and significantly prolonged blood circulation in vivo. Furthermore, we have shown that (VELPPP)-modified liposomes induced negligible anti-peptide IgM production, and no noticeable accelerated blood clearance after repeated or multi-dose administration.
View Article and Find Full Text PDFFront Med (Lausanne)
December 2024
Department of Hepatology, The Third People's Hospital of Taiyuan, Taiyuan, Shanxi Province, China.
Background: Pegylated interferon- (PEG-IFN-α) therapy could decrease hepatitis B surface antigen (HBsAg) and improve long-term prognosis of hepatitis B virus (HBV) infection. However, studies on safety and efficacy of PEG-IFN- for patients with HBV-related cirrhosis are limited.
Methods: This was a single-center study.
Gut
December 2024
D-SOLVE consortium, an EU Horizon Europe funded project (No 101057917), Hannover, Germany.
Chronic hepatitis D (CHD) is the most severe form of viral hepatitis, carrying a greater risk of developing cirrhosis and its complications. For decades, pegylated interferon alpha (PegIFN-α) has represented the only therapeutic option, with limited virological response rates and poor tolerability. In 2020, the European Medicines Agency approved bulevirtide (BLV) at 2 mg/day, an entry inhibitor of hepatitis B virus (HBV)/hepatitis delta virus (HDV), which proved to be safe and effective as a monotherapy for up to 144 weeks in clinical trials and real-life studies, including patients with cirrhosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!