Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ceiling beams at the top of tunnels are more common in actual projects. Under the influence of thermal buoyancy, the ceiling structure significantly affects the diffusion characteristics of fire smoke within the tunnel. This study performed several sets of model experiments and numerical simulations to investigate the impact of the height and spacing of ceiling beams on the diffusion of smoke in tunnel fires, which results show that the maximum temperature rise and temperature decay patterns of fire smoke follow exponential changes. The increased height of the ceiling beams and the reduced spacing correspond to higher maximum temperatures on the ceiling. Furthermore, as the height of the ceiling beams increases and the spacing decreases, the longitudinal attenuation of ceiling temperature accelerates within the tunnel. A predictive model for ceiling temperature rise and a dimensionless temperature attenuation model were developed to characterize this phenomenon. The relative error between the predicted results and experimental findings falls within ± 15%. This study broadens the application scope of fire smoke diffusion models, which can provide technical support for smoke prevention and exhaust design of tunnels with similar structures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11621123 | PMC |
http://dx.doi.org/10.1038/s41598-024-82368-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!