Direct modulation of CRH nerve terminal function by noradrenaline and corticosterone.

J Neurosci

Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.

Published: December 2024

Nerve terminals are the final point of regulation before neurosecretion. As such, neuromodulators acting on nerve terminals can exert significant influence on neural signalling. Hypothalamic corticotropin-releasing hormone (CRH) neurons send axonal projections to the median eminence where CRH is secreted to stimulate the hypothalamic-pituitary-adrenal (HPA) axis. Noradrenaline and corticosterone are two of the most important neuromodulators of HPA axis function; noradrenaline excites CRH neurons and corticosterone inhibits CRH neurons by negative feedback. Here, we used GCaMP6f Ca imaging and measurement of nerve terminal CRH secretion using sniffer cells to determine whether these neuromodulators act directly on CRH nerve terminals in male mice. Contrary to expectations, noradrenaline inhibited action potential-dependent Ca elevations in CRH nerve terminals and suppressed evoked CRH secretion. This inhibitory effect was blocked by α2-adrenoreceptor antagonism. Corticosterone also suppressed evoked CRH peptide secretion from nerve terminals, independent of action potential-dependent Ca levels. This inhibition was prevented by the glucocorticoid receptor antagonist, RU486, and indicates that CRH nerve terminals may be a site of fast glucocorticoid negative feedback. Together these findings establish median eminence nerve terminals as a key site for regulation of the HPA axis. Corticotropin-releasing hormone (CRH) neurons control the stress axis. Noradrenaline and corticosterone are two signalling molecules that control CRH neuron cell body excitability. However, their effect on CRH nerve terminal function is unknown. To examine this, we performed live Ca imaging and measured CRH secretion. We found that noradrenaline suppressed nerve terminal Ca levels and inhibited nerve terminal CRH secretion. Corticosterone had no effect on nerve terminal Ca, but inhibited nerve terminal CRH secretion. This suggests that CRH nerve terminals may be a site of fast corticosteroid negative feedback. Together, these data demonstrate that CRH nerve terminals are a critical point of regulation in the control of the stress axis.

Download full-text PDF

Source
http://dx.doi.org/10.1523/JNEUROSCI.1092-24.2024DOI Listing

Publication Analysis

Top Keywords

nerve terminals
36
crh nerve
28
nerve terminal
28
crh secretion
20
crh
19
nerve
16
crh neurons
16
noradrenaline corticosterone
12
hpa axis
12
negative feedback
12

Similar Publications

Introduction In their routine practice, dentists frequently encounter dentinal hypersensitivity, which is caused by the pulpal nerves' increased excitability due to fluid movement in the dentinal tubules. It is treated in-office using dentin desensitizers, which reduce hypersensitivity by obstructing the open tubules or desensitizing the free nerve endings present within the tubules. However, no substance or treatment plan has ever been proven to be the gold standard for the efficient treatment of dentinal hypersensitivity.

View Article and Find Full Text PDF

Aging disrupts multiple homeostatic processes, including autophagy, a cellular process for the recycling and degradation of defective cytoplasmic structures. Acute treatment with the autophagy inhibitor chloroquine blunts the maximal forces generated by the diaphragm muscle, but the mechanisms underlying neuromuscular dysfunction in old age remain poorly understood. We hypothesized that chloroquine treatment increases the presynaptic retention of the styryl dye FM 4-64 following high-frequency nerve stimulation, consistent with the accumulation of unprocessed bulk endosomes.

View Article and Find Full Text PDF

25-Hydroxycholesterol modulates synaptic vesicle endocytosis at the mouse neuromuscular junction.

Pflugers Arch

January 2025

Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, RT, Russia.

Many synaptic vesicles undergo exocytosis in motor nerve terminals during neuromuscular communication. Endocytosis then recovers the synaptic vesicle pool and presynaptic membrane area. The kinetics of endocytosis may shape neuromuscular transmission, determining its long-term reliability.

View Article and Find Full Text PDF

Background: nowadays, the photoacoustic imaging is in the mainstream of cancer theranostics. In this study the nanoparticles with previously proven photoacoustic imaging properties, i.e.

View Article and Find Full Text PDF

Understanding vibrissal transduction has advanced by serial sectioning and identified afferent recordings, but afferent mapping onto the complex, encapsulated follicle remains unclear. Here, we reveal male rat C2 vibrissa follicle innervation through synchrotron X-ray phase contrast tomograms. Morphological analysis identified 5% superficial, ~32 % unmyelinated and 63% myelinated deep vibrissal nerve axons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!