In many industrial applications, preparation of cyclodextrin (CD) inclusion complexes with drugs, food additives, dyes and components of essence oils is performed in solid mixtures, slurries or paste-like systems having lack of water to dissolve cyclodextrin and guest completely. Such systems need a different description than supplied by classical analysis of CD complexation in aqueous solutions. The main feature of solid-state guest inclusion is the phase transition from solid CD to solid inclusion compound. This implies a complex interplay between a size exclusion effect for guest inclusion, a cooperative activation of this process by the third component such as water or organic compound and competition of guest and water for the space inside CD crystal lattice. The present review summarizes the current state of research of guest inclusion by native CDs in solid state and compares the driving forces of this process and its structure-property relationships with those of complexation in aqueous solutions. For an adequate comparison, the latter process was analyzed in thermodynamic activity scale, which allowed to separate hydrophobic effect and such important factors of complex stability as guest molecular shape and "high-energy" water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2024.122962 | DOI Listing |
Talanta
December 2024
Department of Pathology, College of Medicine, King Khalid University, Asir, 61421, Saudi Arabia; Forensic Medicine and Clinical Toxicology Department, Mansoura University, Egypt. Electronic address:
Complexing medications with cyclodextrins can enhance their solubility and stability. In this study, we investigated the host-guest complexation between Tetrahydrocurcumin (THC) and Hydroxypropyl-β-Cyclodextrin (HP-β-CD) using density functional theory (DFT) at the B3LYP-D3/TPZ level of theory in two possible orientations. To determine the reactive sites in both complexes for electrophilic and nucleophilic attacks, we calculated and interpreted the binding energy, HOMO and LUMO orbitals, global chemical reactivity descriptors, natural bond orbital (NBO) analysis, and Fukui indices.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Tsinghua University, Institute of Nuclear and New Energy Technology, Room A320, Nengke Building, Qinghua Yuan No.1, Beijing, CHINA.
Exploring host-guest interactions to regulate hydrogen-bonding assembly offers a promising approach for developing advanced porous crystal materials (PCMs). However, screening compatible guests with appropriate geometries and host-guest interactions that could inhibit the dense packing of building blocks remains a primary challenge. This study presents a novel guest-induced crystallization (GIC) strategy, guided by thermodynamic calculations, to develop porous hydrogen-bonded organic frameworks (HOFs) using structurally challenging tetrazole building units.
View Article and Find Full Text PDFFront Neuroimaging
December 2024
Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
Objective: Resting-state functional MRI (rs-fMRI) may localize the seizure onset zone (SOZ) for epilepsy surgery, when compared to intracranial EEG and surgical outcomes, per a prior meta-analysis. Our goals were to further characterize this agreement, by broadening the queried rs-fMRI analysis subtypes, comparative modalities, and same-modality comparisons, hypothesizing SOZ-signal strength may overcome this heterogeneity.
Methods: PubMed, Embase, Scopus, Web of Science, and Google Scholar between April 2010 and April 2020 via PRISMA guidelines for SOZ-to-established-modalities were screened.
Nat Commun
December 2024
Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
Biological systems are complex, encompassing intertwined spatial, molecular and functional features. However, methodological constraints limit the completeness of information that can be extracted. Here, we report the development of INSIHGT, a non-destructive, accessible three-dimensional (3D) spatial biology method utilizing superchaotropes and host-guest chemistry to achieve homogeneous, deep penetration of macromolecular probes up to centimeter scales, providing reliable semi-quantitative signals throughout the tissue volume.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China.
Accurate and sensitive fluorescence imaging of biothiols is essential for understanding the mechanism underlying some physiological and pathological events, as well as the prevention and diagnosis of diseases. However, low signal transduction efficiency and poor biocompatibility of fluorescence tags associated with current sensors hinder their potential utilizations. Herein, a smart biothiols sensitive vivo imaging platform on the basis of amplifying nanoprobe has been designed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!