Hydrogen sulfide (HS) is a potent redox-active signaling molecule commonly dysregulated in disease states. The production of HS and its involvement in various pathological conditions associated with mitochondrial dysfunction has been extensively documented. During stress, cystathionine gamma-lyase and cystathionine beta-synthase enzymes residing in cytosol are copiously translocated into the mitochondria to boost HS production, confirming its pivotal role in mitochondrial activities. However, report on HS levels in tissue, cells and organelles are lacking, mainly due to the absence of precise and accurate detection tools. Thus, there is a need to determine and monitor the levels of HS in this important organelle. Recently, fluorescent probes have been identified as efficient tools for detecting and monitoring the levels of various biomolecules of medical importance including biological thiols. The development of fluorescent probes is a multi-pronged approach involving coupling of fluorophores with responsive sites. The use of fluorescent probes for monitoring mitochondrial HS levels has recently received more attention, resulting in numerous publications depicting their synthesis, mechanism of action, application, and potential challenges. Fluorescent probes offer precise and timely results, high sensitivity, and selectivity, low biotoxicity, and minimal background interference. In this review, we aim to report designs of such probes, reaction mechanisms and their application in detecting mitochondrial HS levels. Fluorescent probes can help uncover physio/pathological levels of HS in essential organelles, its interactions with various biomarkers and associated consequences in biological systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbi.2024.111328 | DOI Listing |
PLoS Pathog
January 2025
Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands.
Identifying cellular and molecular mechanisms maintaining HIV-1 latency in the viral reservoir is crucial for devising effective cure strategies. Here we developed an innovative flow cytometry-fluorescent in situ hybridization (flow-FISH) approach for direct ex vivo reservoir detection without the need for reactivation using a combination of probes detecting abortive and elongated HIV-1 transcripts. Our flow-FISH assay distinguished between HIV-1-infected CD4+ T cells expressing abortive or elongated HIV-1 transcripts in PBMC from untreated and ART-treated PWH from the Amsterdam Cohort Studies.
View Article and Find Full Text PDFJ Fluoresc
January 2025
School of Science, Jiangnan University, Wuxi, 214122, China.
In this study, nitrogen-doped carbon nanodots (N-CDs) with temperature and fluorescence sensing were prepared via hydrothermal method using L-lysine and ethylenediamine as precursors. The synthesized N-CDs exhibited spherical morphology with sizes ranging from 2.8 to 5.
View Article and Find Full Text PDFLangmuir
January 2025
College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China.
The development of probes for the efficient detection of volatile organic compounds is crucial for both human health protection and environmental monitoring. In this study, we successfully synthesized a ratiometric fluorescent sensing material [Eu-UiO-67 (1:1)], featuring dual-emission fluorescence peaks via a one-pot method. This material demonstrated exceptional ratiometric fluorescence recognition properties for liquid styrene and isoprene, achieving low limit of detections (LODs) of 6.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of Chemistry and Material Engineering, Lyuliang University, Lyuliang, 033000, P. R. China.
Innovative double-emission carbon dots (DE-CDs) were synthesized via a one-step hydrothermal method using fennel and m-phenylenediamine (m-PD) as precursors. These DE-CDs exhibited dual emission wavelengths at 432 and 515 nm under different excitations, making them highly versatile for fluorescence-based applications. The fluorescence of the DE-CDs was efficiently quenched by tetracycline (TC) through the inner filter effect (IFE), allowing for the construction of a sensitive dual-response fluorescent sensor.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
() is a major pathogenic bacterium responsible for bacterial foodborne diseases, making its rapid, specific, and accurate detection crucial. In this study, we develop a ratiometric biosensor based on the recombinase polymerase amplification-clustered regularly interspaced short palindromic repeats/CRISPR associated protein 12a (RPA-CRISPR/Cas12a) system and Eu-metal-organic framework (Eu-MOF) fluorescent nanomaterials for the high-sensitivity detection of , combining with RPA for efficient isothermal amplification, this sensor enhances specificity and sensitivity by utilizing the target activation of CRISPR/Cas12a. The Eu-MOF serves a dual function, providing stable red fluorescence as a reference signal and adsorbing FAM-labeled probes for fluorescence quenching, forming a dual-signal system that significantly reduces background interference.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!