Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Polysaccharides from Momordica charantia L. (MCP) have attracted interest for their diverse biological activities. This study investigated the ultrasound-assisted extraction of MCP, optimizing conditions using response surface methodology. The optimal extraction parameters were a material-liquid ratio of 1:4 (g/mL), a temperature of 74 °C, an extraction time of 2.4 h, and an ultrasonic power of 296 W, resulting in a total carbohydrate content of 40.22 ± 1.69 %, closely matching theoretical predictions. Following extraction, MCP was purified using DEAE Sepharose Fast Flow anion exchange and Sephadex G-100 dextran gel chromatography, isolating a pure polysaccharide fraction, MCPS-3. Structural analysis revealed that MCPS-3, with a molecular mass of 93.796 kDa, consisted of rhamnose, glucuronic acid, galacturonic acid, glucose, galactose, and arabinose in molar ratios of 10.66:3.66:258.0:1.0:51.0:9.338. Methylation and NMR analyses suggested that MCPS-3 was a complex polysaccharide, predominantly homogalacturonan domains with rhamnogalacturonan I side chains. In functional assays, MCPS-3 demonstrated inhibition of α-amylase and α-glucosidase activities. Additionally, in insulin-resistant HepG2 cells, MCPS-3 improved glucose consumption, increased glycogen content, and enhanced the activities of hexokinase and pyruvate kinase. These findings provided insights into the structural properties of MCPS-3 and underscored its potential as a natural compound with significant hypoglycemic activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.138300 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!