A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Impregnation of ZnO over a new hydrogel bead based conducting polymer and alginate for textile dye treatment: Interface charge transfer assessment, real wastewater treatment, and dye selectivity. | LitMetric

In this study, we have taken a novel approach to dye removal and real wastewater treatment by employing dual smart strategies: surface charge transfer engineering and developing an easily recoverable photocatalyst. The removal of acid blue 92 (AB92) dye by using a novel 3D polypyrrole-zinc oxide-sodium alginate (PPy-ZnO-SA) nanocomposite under UV-C, visible light, and natural sunlight was investigated. The nanocomposite hydrogel was characterized using various techniques, including XRD, Raman, FESEM, TEM, XPS, PL, DRS, and CV analyses, and the type of effective interactions in different stages of removal was investigated by FTIR analysis. The optimum conditions (reaction time = 284 min, dye concentration = 19.37 mg/L, and dose of beads 36 g/L) were optimized by the central composite design (CCD) approach, and the removal efficiency of AB92 was achieved at 93.80 % and 97.16 % for UV and visible light, respectively. The nanocomposite's performance on various dyes was studied, and the catalyst successfully removed an average of 71.64 % of the cationic dyes and 95.13 % of the anionic dyes under light. After examining both photocatalytic and coagulation treatments, our analysis of actual textile wastewater revealed a COD reduction of 94.04 % and 84.62 % under UV and visible light, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.138226DOI Listing

Publication Analysis

Top Keywords

visible light
12
charge transfer
8
real wastewater
8
wastewater treatment
8
dye
5
impregnation zno
4
zno hydrogel
4
hydrogel bead
4
bead based
4
based conducting
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!