Chitosan-coated PLA/poloxamer nanoparticles stimulate immunologic cancer cell death and synergistic chemo-immunotherapeutic efficacy.

Int J Biol Macromol

Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160, Republic of Korea. Electronic address:

Published: January 2025

Cancer, a key factor in declining global life expectancy, has driven the integration of chemotherapy and immunotherapy to address multidrug resistance and influence the tumor microenvironment. We developed a novel vaccine delivery carrier, a chitosan-coated polylactic acid/poloxamer nanoparticle (CPP NP), designed to co-encapsulate an anticancer drug and antigen without any chemical conjugation process, enabling effective and synergistic cancer chemo-immunotherapy. The CPP NP achieved synergistic efficacy through paclitaxel (PTX), an immunogenic cell death-inducing chemotherapeutic agent; ovalbumin (OVA), which promotes dendritic cell maturation; and enhanced cellular uptake facilitated by chitosan. The PTX and OVA-loaded CPP NPs (PTX/OVA@CPP NPs) were stable in PBS for four weeks and resuspended well after lyophilization without any cryoprotectants. Moreover, PTX and OVA from the NPs exhibited a sustained release rate and pH-responsive release pattern within different cellular microenvironments. Importantly, PTX@CPP NPs exhibited much higher anticancer efficacy across various cancer cell lines, even multidrug-resistant cells, compared to free PTX and PTX@PP NPs without the chitosan coating. In antigen-presenting cells, OVA@CPP NPs led to higher IL-2 secretion and cellular uptake compared to free OVA and OVA@PP NPs. Furthermore, in a tumor-bearing mouse model, PTX/OVA@CPP NPs exhibited strong synergistic tumor suppression and triggered OVA antigen-specific responses, promoting an antitumor immune response. These findings demonstrate that PTX/OVA@CPP NPs show potential as new chemo-immunotherapeutic agents for effective cancer treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.138346DOI Listing

Publication Analysis

Top Keywords

ptx/ova@cpp nps
12
nps exhibited
12
nps
9
cancer cell
8
efficacy cancer
8
cellular uptake
8
compared free
8
cancer
5
chitosan-coated pla/poloxamer
4
pla/poloxamer nanoparticles
4

Similar Publications

Albumin-bound paclitaxel (nab-PTX) nanoparticles have been proven effective in treating advanced pancreatic cancer. However, the clinical application of nab-PTX nanoparticles is often associated with suboptimal outcomes and severe side effects due to its non-specific distribution and rapid clearance. This study aims to develop a novel nanoplatform that integrates sonodynamic therapy (SDT) and chemotherapy to enhance treatment efficacy and reduce systemic side effects.

View Article and Find Full Text PDF

A Nanotheranostic Agent for Synergistic Antitumor Chemo/Phototherapy Prepared by Paclitaxel-Induced Self-Assembly of PEGylated Human Serum Albumin with Prolonged Circulation.

ACS Omega

December 2024

Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, China.

The integration of different therapies to enhance the efficacy and minimize adverse reactions has become popular recently. This approach leverages the complementary mechanisms of action of different treatments, which can lead to better therapeutic outcomes and reduced side effects. Human serum albumin (HSA) exhibits excellent drug loading ability and is often used for biomimetic tumor delivery in multidrug nanocarriers.

View Article and Find Full Text PDF

Optimally designed PEGylatied arabinoxylan paclitaxel nano-micelles as alternative delivery for Abraxane®: A potential targeted therapy against breast and lung cancers.

Int J Biol Macromol

December 2024

Group of Bionanotechnology and Molecular Cell Biology, Nanomedicine department, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt. Electronic address:

Paclitaxel (PTX) binds to spindle microtubules and inhibits mitotic division leading to cell death. However, its wide distribution, high absorption, and less selectively, minimize its application in cancer clinics. In this study, isolated arabinoxylans were used to encapsulate PTX, and then both were covered by polyethylene glycol conjugated to folic acid (FA), to strengthen its specificity to cancerous cells.

View Article and Find Full Text PDF

Prodrug-based nanoassemblies are promising platforms for cancer therapy. Prodrugs typically consist of three main components: drug modules, intelligent response modules, and modification modules. However, the available modification modules are usually hydrophobic aliphatic side chains, which affect the activation efficiency of the prodrugs.

View Article and Find Full Text PDF

Nanomedicine based on chemotherapy-induced immunogenic death combined with immunotherapy to enhance antitumor immunity.

Front Pharmacol

December 2024

Department of Breast Surgery, General Surgery Center of The First Hospital, Jilin University, Changchun, China.

Introduction: Chemo-immunotherapy based on inducing tumor immunogenic cell death (ICD)with chemotherapy drugs has filled the gaps between traditional chemotherapy and immunotherapy. It is verified that paclitaxel (PTX) can induce breast tumor ICD. From this basis, a kind of nanoparticle that can efficiently deliver different drug components simultaneously is constructed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!