The content of cytochrome P-450, isozyme 6, in the rabbit pulmonary microsomal fraction was estimated by immunochemical methods to be 1 to 3% of the total cytochrome P-450. Following treatment of rabbits with 2,3,7,8-tetrachlorodibenzo-p-dioxin, the pulmonary microsomal concentration of isozyme 6 increased 16-fold. Isozyme 6 was also detected by immunochemical methods, but not by electrophoresis and staining for protein, in preparations of isozyme 5 isolated from the pulmonary microsomal fraction of untreated rabbits. The metabolism of benzo[a]pyrene in these preparations was found to be catalyzed by isozyme 6, not by isozyme 5 as previously concluded. Cytochrome P-450, isozyme 4, was not detected in the pulmonary microsomal fraction from untreated or 2,3,7,8-tetrachlorodibenzo-p-dioxin-treated rabbits. Although benzo[a]pyrene and 7-ethoxyresorufin are both substrates for isozyme 6, the pulmonary microsomal metabolism of these compounds was not increased to the same extent by treatment of rabbits with 2,3,7,8-tetrachlorodibenzo-p-dioxin (about 13-fold for 7-ethoxyresorufin and less than 2-fold for BP). However, lack of agreement between increases in isozyme 6 content and activity, and between the relative increases of the activities with the two substrates, was overcome by the addition of purified NADPH-cytochrome P-450 reductase to the microsomal incubations. When alpha-naphthoflavone, at the minimum concentration required for greater than 90% inhibition of isozyme 6 catalysis, was present in the incubations, no increases in activity were obtained by the addition of purified reductase. The turnover numbers of isozyme 6 in microsomal preparations incubated with purified reductase were similar to those of the purified isozyme in a reconstituted monooxygenase system. The relevance of our results to determinations of the substrate specificities and the microsomal concentrations and activities of isozymes of cytochrome P-450 is discussed. In addition, these parameters are used to assess the extent to which the catalytic potential of isozyme 6 is expressed in the rabbit pulmonary microsomal fraction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0003-9861(86)90456-xDOI Listing

Publication Analysis

Top Keywords

pulmonary microsomal
28
cytochrome p-450
20
microsomal fraction
16
isozyme
14
microsomal
10
isozyme pulmonary
8
reconstituted monooxygenase
8
p-450 isozyme
8
rabbit pulmonary
8
immunochemical methods
8

Similar Publications

Characterization of human alcohol dehydrogenase 4 and aldehyde dehydrogenase 2 as enzymes involved in the formation of 5-carboxylpirfenidone, a major metabolite of pirfenidone.

Drug Metab Dispos

January 2025

Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Japan.

Pirfenidone (PIR) is used in the treatment of idiopathic pulmonary fibrosis. After oral administration, it is metabolized by cytochrome P450 1A2 to 5-hydroxylpirfenidone (5-OH PIR) and further oxidized to 5-carboxylpirfenidone (5-COOH PIR), a major metabolite excreted in the urine (90% of the dose). This study aimed to identify enzymes that catalyze the formation of 5-COOH PIR from 5-OH PIR in the human liver.

View Article and Find Full Text PDF

Objectives: Cisplatin (DDP) resistance remains a primary cause of chemotherapy failure and recurrence of non-small cell lung cancer (NSCLC). Abnormal high microsomal glutathione transferase 1 (MGST1) expression has been found in DDP-resistant NSCLC cells. This study aimed to explore the function and mechanism of MGST1 in DDP resistance of NSCLC cells.

View Article and Find Full Text PDF

Design, Synthesis, and Evaluation of Selective PDE4 Inhibitors for the Therapy of Pulmonary Injury.

J Med Chem

January 2025

Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China.

Pulmonary inflammation is the main cause of lung injury. Phosphodiesterase 4 (PDE4) is a promising anti-inflammatory target for the treatment of respiratory diseases. Herein, we designed and synthesized 43 compounds in two novel series of benzimidazole derivatives as PDE4 inhibitors.

View Article and Find Full Text PDF

Pulmonary fibrosis (PF) is a progressive, fatal lung disease lacking effective treatments. Autotaxin (ATX) plays a crucial role in exacerbating inflammation and fibrosis, making it a promising target for fibrosis therapies. Herein, starting from PAT-409 (Cudetaxestat), a series of novel ATX inhibitors bearing 1-indole-3-carboxamide, 4,5,6,7-tetrahydro-7-pyrazolo[3,4-]pyridin-7-one, or 4,5,6,7-tetrahydro-1-pyrazolo[4,3-]pyridine cores were designed based on the structure of ATX hydrophobic tunnel.

View Article and Find Full Text PDF

Design, synthesis and biological evaluation of novel diaryl-substituted fused nitrogen heterocycles as tubulin polymerization inhibitors to overcome multidrug resistance in vitro and in vivo.

Eur J Med Chem

February 2025

School of Pharmacy, Fudan University, Shanghai, 201203, China; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China. Electronic address:

Article Synopsis
  • * A new compound, benzoimidazole derivative 37, shows strong cytotoxic effects and can overcome MDR in resistant A549 cells by disrupting microtubule assembly and reducing P-glycoprotein levels.
  • * In vivo tests indicate that compound 37 inhibits tumor growth effectively with low toxicity, making it a promising candidate for treating multidrug-resistant LUAD in future clinical applications.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!