Background: Further studies are necessary to investigate the neural mechanisms elemental of subcortical vascular mild cognitive impairment (svMCI), which is considered as precursor to vascular dementia (VaD). This objective of this research was to investigate the alterations in gray matter volume and brain iron deposition in patients with svMCI.
Methods: This study involved 23 patients classified as health controls (HC) and 20 patients diagnosed with svMCI. All participants received cognitive assessments and magnetic resonance imaging (MRI). This research contains voxel-based morphometry (VBM), voxel-based quantitative susceptibility mapping (QSM) analysis, ROI-based QSM analysis, and correlation analysis.
Results: svMCI patients showed more seriously cognitive impairment than HC patients. VBM analyses showed gray matter atrophy in the cingulate gyrus in the svMCI. Voxel-based QSM analyses showed increased susceptibilities in the right middle frontal gyrus, left paracentral lobule, as well as decreased susceptibility in the right postcentral gyrus in the svMCI. And ROI-based QSM analyses showed increased susceptibilities in left caudate nucleus and cerebellum in the svMCI. In addition, the susceptibility in left middle cingulate cortex and paracingulate gyrus was positively correlated associated with MoCA scores (r = 0.538 p < 0.001), and the susceptibility in the right middle frontal gyrus was negatively correlated with MoCA scores (r = -0.418 p < 0.007).
Conclusions: The results of our studies suggest that morphological alterations and iron burden in the brain may be related to cognitive dysfunction in svMCI patients, providing a new way to explore underlying neural mechanisms of cognitive dysfunction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainresbull.2024.111160 | DOI Listing |
Theranostics
January 2025
Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.
Disrupted hippocampal functions and progressive neuronal loss represent significant challenges in the treatment of Alzheimer's disease (AD). How to achieve the improvement of pathological progression and effective neural regeneration to ameliorate the intracerebral dysfunctional environment and cognitive impairment is the goal of the current AD therapy. We examined the therapeutic potential of clinical-grade human derived dental pulp stem cells (hDPSCs) in cognitive function and neuropathology in AD.
View Article and Find Full Text PDFCognitive impairment and dementia have long been recognized as growing public health threats. Studies have found that air pollution is a potential risk factor for dementia, but the literature remains inconclusive. This study aimed to evaluate the association between three major air pollutants (i.
View Article and Find Full Text PDFJ Otol
October 2024
Department of Public Health, Faculty of Medicine and Dentistry, Palacký University Olomouc, Czech Republic.
Background: Over 55 million people worldwide are living with dementia. The rate of cognitive decline increases with age, and loss of senses may be a contributing factor.
Objectives: This study aimed to analyze hearing, olfactory function, and color vision in patients with dementia.
Neurooncol Pract
February 2025
Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.
According to the 2021 World Health Organization classification of CNS tumors, gliomas harboring a mutation in isocitrate dehydrogenase (mIDH) are considered a distinct disease entity, typically presenting in adult patients before the age of 50 years. Given their multiyear survival, patients with mIDH glioma are affected by tumor and treatment-related symptoms that can have a large impact on the daily life of both patients and their caregivers for an extended period of time. Selective oral inhibitors of mIDH enzymes have recently joined existing anticancer treatments, including resection, radiotherapy, and chemotherapy, as an additional targeted treatment modality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!