Analysis of the effect of the quantity of inflow into Ebinur Lake on its ecological security.

Environ Res

State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830000, China.

Published: December 2024

The ecological security of lakes in arid areas is crucial for the sustainable development of regional society and the economy. The threat of dry lake-bottom dust and degradation of vegetation around lakes has become increasingly significant. This study proposes the maintenance of an optimal water surface area to ensure the ecological safety goals of Ebinur Lake. The study also conducts a scenario analysis of the amount of water entering the lake. Utilizing a Systeme Hydrologique Europeen (MIKE SHE) watershed model with four different inflow scenarios, the study simulated the Ebinur Lake's area changes under various water replenishment scenarios. Replenishment scenarios that meet the ecological security goals were selected for this study. The results indicate that maintaining a lake surface area of 710 km or more during warm season can prevent wind and sand fixation, while a lake surface area of no less than 500 km during dry season may help maintain ecological security. To ensure ecological security during dry years, the Kuitun River should annually replenish the Ebinur Lake with 1.75 × 10 m. These findings provide valuable insights a practical tool for the ecological restoration and management of lakes in arid areas.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2024.120517DOI Listing

Publication Analysis

Top Keywords

ecological security
20
ebinur lake
12
surface area
12
lakes arid
8
arid areas
8
ensure ecological
8
replenishment scenarios
8
lake surface
8
ecological
7
lake
6

Similar Publications

Marginal response of non-structural carbohydrates and increased biomass in a dominant shrub (Dasiphora fruticosa) to water table decline in a minerotrophic peatland.

Plant Biol (Stuttg)

January 2025

Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China.

Assessing how dominant peatland species, such as Dasiphora fruticosa, adapt to water table decline is crucial to advance understanding of their growth and survival strategies. Currently, most studies have primarily focused on their growth and biomass, with limited knowledge on the response of non-structural carbohydrates (NSCs) and physiological adaptations of these woody plants under long-term drainage. This study assessed the response of photosynthesis and transpiration rates, biomass, and NSC concentrations (including soluble sugars and starch) in the leaves, stems, and roots of D.

View Article and Find Full Text PDF

Implications of bacteria‒bacteria interactions within the plant microbiota for plant health and productivity.

J Zhejiang Univ Sci B

May 2024

State Key Laboratory of Rice Biology and Breeding; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects; Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects; Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.

Crop production currently relies on the widespread use of agrochemicals to ensure food security. This practice is considered unsustainable, yet has no viable alternative at present. The plant microbiota can fulfil various functions for its host, some of which could be the basis for developing sustainable protection and fertilization strategies for plants without relying on chemicals.

View Article and Find Full Text PDF

The discharge of chlorinated effluent from wastewater treatment plants enhances dissolved oxygen in the receiving river: From laboratory study to practical application.

Water Res

December 2024

State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.

Dissolved oxygen (DO) is essential for the health of aquatic ecosystems, supporting biogeochemical cycles and the decomposition of organic matter. However, continuous untreated external inputs from illicit discharges or sewer overflows, coupled with inadequate ecological base flow, have led to widespread river deoxygenation and serious ecological crises. This study demonstrates that chlorinated wastewater treatment plant (WWTP) effluent can significantly enhance DO levels in downstream rivers, particularly in areas with high pollution loads or poor ecological base flow.

View Article and Find Full Text PDF

Roughly 10 % of the world's arable land is affected by salinization, which significantly reducing crop yields, degrading soil health, and posing a serious threat to food security and ecological stability. High-efficient water-saving irrigation (HEI) technologies have showed positive effects on crop yield, especially with long-term application in salinized soil fields. However, the microbial mechanisms and influential pathways that promote crop yield and reduce salinity under consecutive HEI remain unclear.

View Article and Find Full Text PDF

Environmental microbial reservoir influences the bacterial communities associated with Hydra oligactis.

Sci Rep

December 2024

MTA-DE "Momentum" Ecology, Evolution & Developmental Biology Research Group, Dept. of Evolutionary Zoology, University of Debrecen, Debrecen, Hungary.

The objective to study the influence of microbiome on host fitness is frequently constrained by spatial and temporal variability of microbial communities. In particular, the environment serves as a dynamic reservoir of microbes that provides potential colonizers for animal microbiomes. In this study, we analyzed the microbiome of Hydra oligactis and corresponding water samples from 15 Hungarian lakes to reveal the contribution of environmental microbiota on host microbiome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!