Crispr-cas biosensing for rapid detection of viral infection.

Clin Chim Acta

Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, PR China. Electronic address:

Published: December 2024

AI Article Synopsis

  • The rise of viral diseases necessitates quick and precise diagnostic methods to effectively control and prevent outbreaks.
  • The CRISPR-Cas biosensing approach stands out due to its high specificity, sensitivity, ease of use, and affordability, making it a promising tool for fast viral detection.
  • This paper reviews the CRISPR-Cas principles, recent advancements in virus detection technologies, and highlights upcoming challenges and future directions for improving rapid viral diagnostics.

Article Abstract

With the frequent outbreaks of viral diseases globally, accurate and rapid diagnosis of viral infections is of significant importance for disease prevention and control. The CRISPR-Cas combined biosensing strategy, as an emergent nucleic acid detection technology, exhibits notable advantages including high specificity, elevated sensitivity, operational simplicity, and cost-effectiveness, thereby demonstrating significant potential in the domain of rapid viral diagnostics. This paper summarizes the principles of the CRISPR-Cas system, the novel biotechnologies, and the latest research progress in virus detection using the combined biosensing strategy. Additionally, this paper discusses the challenges faced by CRISPR-Cas biosensing strategies and outlines future development directions, which provides a reference for further research and clinical applications in the rapid diagnosis of viral infections.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cca.2024.120071DOI Listing

Publication Analysis

Top Keywords

crispr-cas biosensing
8
rapid diagnosis
8
diagnosis viral
8
viral infections
8
combined biosensing
8
biosensing strategy
8
viral
5
crispr-cas
4
rapid
4
biosensing rapid
4

Similar Publications

Amplification-free CRISPR/Cas based dual-enzymatic colorimetric nucleic acid biosensing device.

Lab Chip

January 2025

Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.

Nucleic acid testing (NAT) is widely considered the gold standard in analytical fields, with applications spanning environmental monitoring, forensic science and clinical diagnostics, among others. However, its widespread use is often constrained by complicated assay procedures, the need for specialized equipment, and the complexity of reagent handling. In this study, we demonstrate a fully integrated 3D-printed biosensensing device employing a CRISPR/Cas12a-based dual-enzymatic mechanism for highly sensitive and user-friendly nucleic acid detection.

View Article and Find Full Text PDF

CRISPR/Cas12a with Universal crRNA for Indiscriminate Virus Detection.

Molecules

December 2024

Biotecnovo (Beijing) Co., Ltd., Room 801 Suit C Hengtai Center, Building 3 Gate, 18 North Feng Road, Fengtai District, Beijing 100176, China.

Viruses, known for causing widespread biological harm and even extinction, pose significant challenges to public health. Virus detection is crucial for accurate disease diagnosis and preventing the spread of infections. Recently, the outstanding analytical performance of CRISPR/Cas biosensors has shown great potential and they have been considered as augmenting methods for reverse-transcription polymerase chain reaction (RT-PCR), which was the gold standard for nucleic acid detection.

View Article and Find Full Text PDF

HRP-integrated CRISPR-Cas12a biosensor for rapid point-of-care detection of Langya henipavirus.

iScience

December 2024

Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), School of Laboratory Medicine, Chongqing Medical University, 1 Xueyuan Road, Chongqing 400016, China.

Article Synopsis
  • The COVID-19 pandemic revealed the urgent need for better diagnostic tools to quickly identify new infectious diseases, such as Langya henipavirus (LayV).
  • Researchers developed a sensitive detection method using CRISPR-Cas12a, allowing LayV RNA to be identified at just 10 copies/μL within 30 minutes at room temperature.
  • A new HRP-ssDNA reporter was designed so that CRISPR-Cas12a can detect LayV RNA without needing pre-amplification, achieving visibility of 1,200 copies/μL to the naked eye, enhancing point-of-care testing in resource-limited areas.
View Article and Find Full Text PDF

Mitigating Antibiotic Resistance: The Utilization of CRISPR Technology in Detection.

Biosensors (Basel)

December 2024

Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, College of Life Science, China Jiliang University, Hangzhou 310018, China.

Antibiotics, celebrated as some of the most significant pharmaceutical breakthroughs in medical history, are capable of eliminating or inhibiting bacterial growth, offering a primary defense against a wide array of bacterial infections. However, the rise in antimicrobial resistance (AMR), driven by the widespread use of antibiotics, has evolved into a widespread and ominous threat to global public health. Thus, the creation of efficient methods for detecting resistance genes and antibiotics is imperative for ensuring food safety and safeguarding human health.

View Article and Find Full Text PDF

An MSRE-Assisted Glycerol-Enhanced RPA-CRISPR/Cas12a Method for Methylation Detection.

Biosensors (Basel)

December 2024

Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, University Town of Shenzhen, Nanshan District, Shenzhen 518055, China.

Background: Nasopharyngeal carcinoma (NPC) is a malignant tumor with high prevalence in southern China. Aberrant DNA methylation, as a hallmark of cancer, is extensively present in NPC, the detection of which facilitates early diagnosis and prognostic improvement of NPC. Conventional methylation detection methods relying on bisulfite conversion have limitations such as time-consuming, complex processes and sample degradation; thus, a more rapid and efficient method is needed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!