Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Inhalational anesthetic sevoflurane can cause myelination damage in developing brain. This study examines the effects of histamine receptor 3 (H3) antagonist thioperamide on sevoflurane-induced hypomyelination and neurobehavioral deficits.
Methods: Neonatal C57BL/6 mice were exposed to sevoflurane for consecutive three days and treated with H3 receptor antagonist thioperamide. Myelination was assessed in the hippocampus and corpus callosum. The neurobehavioral functions were also examined. Primary oligodendrocyte progenitor cells (OPCs) were used for in vitro experiments and the underlying mechanism.
Results: Inhibition of H3 receptor with thioperamide significantly alleviated sevoflurane-induced impairments in myelination and neurobehavioral functions. In vitro experiments showed that thioperamide reversed the effects of sevoflurane on OPCs migration, proliferation and differentiation into mature oligodendrocytes. Mechanistically, thioperamide improved sevoflurane-induced hypomyelination may through H3 receptor-mediated GSK-3β/β-catenin pathway.
Conclusion: H3 receptor antogonist thioperamide could protect developing brain against hypomyelination and neurobehavioral deficits after repeated sevoflurane exposure. Therefore H3 receptor is a potential target for preventing anesthetic-induced developmental neurotoxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.expneurol.2024.115086 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!