Modulation of TCR stimulation and pifithrin-α improve the genomic safety profile of CRISPR-engineered human T cells.

Cell Rep Med

Technical University of Munich (TUM), School of Medicine and Health, Department of Preclinical Medicine, Institute for Medical Microbiology, Immunology and Hygiene, 81675 Munich, Germany; TUM, Institute for Advanced Study, 85748 Garching, Germany. Electronic address:

Published: December 2024

AI Article Synopsis

  • - CRISPR-engineered CAR T cells show promise in cancer treatments but have been linked to chromosomal issues due to the CRISPR process.
  • - The study reveals that increased T cell activation and faster proliferation lead to larger DNA deletions, while non-activated T cells have a lower risk but are less effective for gene editing.
  • - A small molecule called pifithrin-α can reduce chromosomal damage while preserving the functionality of CRISPR-engineered T cells, making it a viable strategy for improving genomic safety.

Article Abstract

CRISPR-engineered chimeric antigen receptor (CAR) T cells are at the forefront of novel cancer treatments. However, several reports describe the occurrence of CRISPR-induced chromosomal aberrations. So far, measures to increase the genomic safety of T cell products focused mainly on the components of the CRISPR-Cas9 system and less on T cell-intrinsic features, such as their massive expansion after T cell receptor (TCR) stimulation. Here, we describe driving forces of indel formation in primary human T cells. Increased T cell activation and proliferation speed correlate with larger deletions. Editing of non-activated T cells reduces the risk of large deletions with the downside of reduced knockout efficiencies. Alternatively, the addition of the small-molecule pifithrin-α limits large deletions, chromosomal translocations, and aneuploidy in a p53-independent manner while maintaining the functionality of CRISPR-engineered T cells, including CAR T cells. Controlling T cell activation and pifithrin-α treatment are easily implementable strategies to improve the genomic integrity of CRISPR-engineered T cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11722128PMC
http://dx.doi.org/10.1016/j.xcrm.2024.101846DOI Listing

Publication Analysis

Top Keywords

tcr stimulation
8
improve genomic
8
genomic safety
8
human t cells
8
car t cells
8
t cell activation
8
large deletions
8
crispr-engineered t cells
8
t cells
7
modulation tcr
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!