Shifts in host-associated microbiomes can impact both host and microbes. It is of interest to understand how perturbations, like the introduction of exogenous chemicals, impact microbiomes. In poison frogs (family Dendrobatidae), the skin microbiome is exposed to alkaloids that the frogs sequester for defense. These alkaloids are antimicrobial; however, their effect on the frogs' skin microbiome is unknown. To test this, we characterized microbial communities from field-collected dendrobatid frogs. Then, we conducted a laboratory experiment to monitor the effect of the alkaloid decahydroquinoline (DHQ) on the microbiome of two frog species with contrasting alkaloid loads in nature. In both datasets, we found that alkaloid-exposed microbiomes were more phylogenetically diverse, with an increase in diversity among rare taxa. To better understand the isolate-specific response to alkaloids, we cultured microbial isolates from poison frog skin and found that many isolates exhibited enhanced growth or were not impacted by the addition of DHQ. To further explore the microbial response to alkaloids, we sequenced the metagenomes from high- and low-alkaloid frogs and observed a greater diversity of genes associated with nitrogen and carbon metabolism in high-alkaloid frogs. From these data, we hypothesized that some strains may metabolize the alkaloids. We used stable isotope tracing coupled to nanoSIMS (nanoscale secondary ion mass spectrometry), which supported the idea that some of these isolates are able to metabolize DHQ. Together, these data suggest that poison frog alkaloids open new niches for skin-associated microbes with specific adaptations, such as alkaloid metabolism, that enable survival in this environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cub.2024.10.069 | DOI Listing |
Elife
December 2024
Department of Chemistry and Physics, Indiana State University, Terre Haute, United States.
Understanding the origins of novel, complex phenotypes is a major goal in evolutionary biology. Poison frogs of the family Dendrobatidae have evolved the novel ability to acquire alkaloids from their diet for chemical defense at least three times. However, taxon sampling for alkaloids has been biased towards colorful species, without similar attention paid to inconspicuous ones that are often assumed to be undefended.
View Article and Find Full Text PDFCurr Biol
January 2025
Department of Biology, Stanford University, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA. Electronic address:
Shifts in host-associated microbiomes can impact both host and microbes. It is of interest to understand how perturbations, like the introduction of exogenous chemicals, impact microbiomes. In poison frogs (family Dendrobatidae), the skin microbiome is exposed to alkaloids that the frogs sequester for defense.
View Article and Find Full Text PDFHorm Behav
November 2024
Department of Biology, Stanford University, Stanford, CA 94305, USA. Electronic address:
Infanticide is widespread across the animal kingdom, but the physiological drivers of infanticide versus care or neglect are relatively unexplored. Here, we identified salient environmental and physiological antecedents of infanticide in the mimic poison frog (Ranitomeya imitator), a biparental amphibian. We explored potential environmental cues influencing infant-directed behavior by evaluating changes in the frequency of food provisioning and tadpole mortality after either cross-fostering tadpoles between family units or displacing tadpoles within the terraria of their parents.
View Article and Find Full Text PDFbioRxiv
October 2024
Department of Biology, Stanford University, Stanford, CA 94305, USA.
Infanticide is widespread across the animal kingdom, but the physiological drivers of infanticide versus care or neglect are relatively unexplored. Here, we identified salient environmental and physiological antecedents of infanticide in the mimic poison frog (), a biparental amphibian in which female parents feed their tadpoles unfertilized eggs. Specifically, we explored potential environmental cues influencing infant-directed behavior by evaluating changes in the frequency of food provisioning and tadpole mortality after either cross-fostering tadpoles between family units or displacing tadpoles within the terraria of their parents.
View Article and Find Full Text PDFBehav Ecol
October 2024
Department of Psychology, Neuroscience, & Behaviour, McMaster University, Hamilton, ON L8S 4L8, Canada.
Aposematic signals warn predators that prey should be avoided due to dangerous secondary defences. However, as warning signals do not always produce avoidance, warning colors may evolve as a trade-off balancing detectability against signal saliency. For Batesian mimics, which display salient signals but lack secondary defenses, the costs of predator encounters are greater, potentially increasing the benefit of crypsis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!